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ANNOTATION 

Based on the connection between stationary (m.iform), in the 
broad sense, random processes anc white noise, the theory of esti- 
mation of the intensity of white noise, acccrding to individual 
realizations, and of their Fractical application to analysis of 
digital computer modeled and experimental nonstationary, broad- 
band random processes, are examined in this work. 
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EVALUATION OF THE ENERGY CHARACTERISTICS OF NONSTATIONARY 
BROADBAND RANDOM PROCESSES ACCORDING TO INDIVIDUAL 

REALIZATIONS 

G. F. Telenin and F. V. Podsypanin 

Introduction - /3* 

For stationary, in the broad sense, random processes, a de- 
tailed tt-eory has been developed, of estimates of the energy 
(quadratic) characteristics, such as the correlation function and 
spectral density, according to individual realizations [19, 20,  221.  
The results of this theory are extensively applied in solution of 
practical problems, both with use of special analcg instruments 
and with digital conpuier application 11, 9 ,  12, 171. 

However, completely stationary processes are not encountered 
in nature. More than chat, in many cases, actual processes differ 
strongly from this idealized scheme. 

Spectral density does not exist in a nonstationary random 
process. Therefore, for a description of the energy distribution 
over the spectrum, new characteristics have to be introcuced, 
which depend not only on frequency, but on time. For example, the 
instantaneous spectrum, defined by the relationship 

wher? I 

-Ti2 

(B. i) 

(B. 2 )  

is obtained by transfornation of realization x(t) , can be used as 
such a characteristic of a nonstationary random process X(t) 123, 
2 4 1 .  The instantaneous spectrum is connected with the correlation 
function by a certain analog relationship of Wiener-Khintchine: 

Systematic investigation of'the application of this char- 
acteristic, which we conducted, showed that the actual (i.e., 
with small shifts and dispersicn) estimates of the instantaneous 
*Numbers in the margin indicate pagination in the foreign text. 
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spectrum according to individual realizations can be obtained, 
only when the process does not differ too strongly from stationary. 
Moreover, in giving a very graphic representation of the frequency 
distribut(on of energy with time, the iistantaneous spectrum Wx 
(f, t) is practically unsuitable for determination of the dis- 
persion of the response of a linear system to an essentially non- 
stationary perturbation. The same remarks can be made with 
respect to other analogous characteristics [l, 251 .  The sig- 
nificant feature here is the fact that all these characteristics 
depend on two variables f and t. 

In connection with this, the thought arises of examination 

We &rive at this phase, 
of another idealized limiting case, when W (f, t) does not depend 
(or depends slightly) on frequency f. 

random process, with uncorrelated values, in which 
by examining tbe so-called white noise, i.e., an idealized - /4 

where 6(t) is the Di.rac delta function, and bx(t) is the white 
noise intensity. 

By substitution of (B.4) in (B.3) and considering that 

we obtain 

The white noise intensity, for example, permits easy aetermi- 
nation of the correlation function of the linear system response. 
Let the response of system Y ( t )  to the action of random process 
X(t) be given by the relationship 

Then 

(B. 7)  

and, for white noise, by substitution of ( 8 . 4 )  here, we obtain 
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White r,oise is the limiting form of actual broadband non- 
stationary processes, the correlation functions of which are close 
to ( B . 4 ) ,  in the sense that relationship ( B . 8 )  is approximately 
satisfied, with a certain function b (t). This function can be 
approximately interpreted as the efgctive intensity of a broad- 
band process or, i n  accordance with (B.51, as half of the in- 
stantaneous spectrum. 

Certain necessary information is presented in the first 
chapter of this work, from the theory of generalized functions and 
the theory of random processes and, based on the connection ex- 
isting between staticnary (uniform), in the broad sense, processes 
and white noise, the theory of estimates of white noise intensity 
according to ir2;vidual realizations is examined. 

In the second chapter, questions are studied which are 
connected with the application of these estimates to analysis of 
digital computer model and experimental nonstationary, broadband 
random processes. 
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CHAPTER I 

THEORY OF ESTIMATES OF WHITE NOISE INTENSITY 

1. Some Information from Theory of 
Generalized Functions 

White noise is an idealized random process, and it cannct be/5 
realized experimentally, since infinite power is required to 
maintair. it. This fact is expressed mathematically, in that both 
realization of the process and certain statistical characteris- 
tics of it (for example, the correlation function) cannot be 
described by means of ordinary functions. Therefore, the simplest 
and most consistent theory of such process can be stat3d with the 
use of the apparatus of generalized functions. 

For the purpose of this work, what physical meaning should 
be put into the concept of white noise and what mathematical 
algorithms permit an actual determination of the quantitative 
characteristics of the process must be quite clearly represented. 
For this we use certain simplest results of the theory of general- 
ized functions[2, 4-61. In order not to overload the work with a 
large amount of special concepts and terms, we restrict ourselves 
to only a qualitative description of these results, without re- 
sorting to strict and detailed mathematicdl formulations. 

We alialyze set X, of all functions $ ( E ) ,  each of which has 
continuous derivatives of all orders and is finite, i.e., it 
reverts to zero, outside a certain limited interval (cif its own, 
for each function $ ( e ) ) .  The sequence J I l ( S ) ,  $2(5), . . . , 
$ , ( E ) ,  . . . is considered to be convergent if all functions of 
tne sequence revert to zero outside the same interval and converge 
uniformly toward a limiting function, just like their derivatives 
of any order. With this definition of convergence of a sequence, 
functionsJI(5) are called basic, and the set of them X,, basic 
function space. Space X, is evidently linear, i.e., together 
with +lf()  and $ 2 ( c ) ,  functions crq1(S) + f3Q2(E) belong to space 
X,,  for any constant cr and f3. We note that the analytical func- 
tions of a real variable are not included in space X,,  since they 
cannot identically revert to zero in a finite interval. An ex- 
ample ;f a function, which is infinitely differentiable and which 
reverts to zero outside the interval -a < e < a, can be 

3 
for 131 1 a. , (1.1) 
for i f 1  BQ- . 

yqP, = 
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Now, let a locally integrable f(E) be assigned, i.e., the 
function of the absolute integrand in any finite interval. Then, 
by means of f ( E ) ,  a linear functional can be assigned 

.a 

which each function $is)  of space X, places in the corresponding 
number <f, $>. In (l.Z), integration actually takes place over a 
finite interval, in which a given function $ ( E )  differs from zero. 
Let the sequence of basic furactions J11(C), $ ( E ) ,  . . . , $n(c), . . . converge in X, towards basic function $ ( E ) .  Since local 
integrability of function f ( 6 )  and the nature of convergence in 
X, permit transition to the limit in (1.2), under the integral 
sign, 

In this manner, functional (1.2) is not only linear, but /6 
continuous, in the basic space. 

It can be shown that the values of functional (1.2) in space 
X, unambiguously deternine function f ( 5 )  , i.e., any locally 
integrable function can be fixed by its values, for each value of 
the argument, and it can be fixed, by means of an infinite set cf 
numbers (1.21, corresponding to all possible basic functions. 
Formula (1.2) gives a very particular form of linear continuous 
functionals in space X,, which usually are called regular. By 
generalization of only what has been said, any linear continuous 
functional, ddined in basic space X,,is identified with a certain 
generalized function f, and they are written in the form of the 
symbolic equality 

In the general case, a generalized function f cannot be fixed by 
its values for each value of the argument and, consequently, it. is 
not a fuaction in t h  ordinary sense, The most well-known 
example of a genera- .ed function is the Dirac 6 function, which 
is defined by the relationship 
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It should be noted that linear, continuous functionals (and, 
consequently, generalize2 functions), defined in Xi, usually can 
be continued to broader classes (spaces) of functions. Thus, for 
example, 6 function (1.5) has been defined for any functionbounded 
almost everywhere, fixed by its values at each point. 

Summation and multiplication operations by number, for 
generalized functions, are defined by the relationships: 

The product of generalized functions is not determined in the 
general case, but multiplication of generalized functional f by 
func'iion a(c), which is infinitely differentiable, is given by 
the formula 

The limiting transition is determined in the following manner. 
The sequence of generalized functions fl, fz, f3, . . . , . . . , by definition, converges to generalized functional 

(1.8a) 

if, for any basic function 

It c m  be shown that, when a sequence of generalized functions 
converges, its limit is determined unambiguously, and it always is 
a generalized function. The operation of the limiting transi- 
tion is linear, i . e . ,  from the condition 

/7 

it follows that 

where a and 8 are any numbers or infinitely differentiable 
functions. 

6 



I f  a seque rce  of l o c a l l y  i n t e g r a b l e  fu:,ctions f l  (5) , f 2  ( 5 )  , 
f 3 ( 5 ) ,  . . . f n ( c ) ,  . . . , converging towards l o c a l l y  i n t e g r a b l e  
f u n c t i o n  f ( E ) ,  such  t h a t  i n  (1, - ) ,  one can  proceed t o  t h e  l i m i t  
under t h e  i n t e g r a l  s i g n ,  f o r  afiy b a s i c  f u n c t i o n  

i .e. ,  t h e  se . i ience converges,  i n  t h e  sense  of g e n e r a l i z e d  
func t ions .  T h i s  takes p l a c e ,  f o r  example, i f  f , ( 5 )  -* f ( 5 )  almost 
everywhere, and )fn(c)l i sbounded by a f i x e d  c o n s t a n t  ir! each 
f i n i t e  i n t e r v a l .  

The fo l lowing  p r o p o s i t i o n  i s  impor tan t  for  p r a c t i c a l  
a p p l i c a t i o n s .  Any g e n e r a l i z e d  f u n c t i o n  (functional) c m  be ob- 
t a i n e d ,  as t h e  l i m i t  of o r d i n a r y  f u n c t i o n s  ( r e g u l a r  f u n c t i o n a l s ) .  
As an example, w e  i n t r o d u c e  t he  so -ca l l edde l t a - fo rm sequence,  i.e 
sequences of o r d i n a r y  f u n c t i o n s ,  which are convergent  i n  t h e  
meaning of g e n e r a l i z e d  f u n c t i o n s  t o  6-funct ion ( 1 . 3 ) .  I n  o r d e r  
for sequence fl ( 5 )  , f 2  { E ) ,  . . . , fQ ( E ) ,  . . . t o  bede l t a - fo rm,  
t h e  fo l lowing  c o n d i t i o n s  must be sat isf ied:  

a. for any U > 0 and la] 5 U, lbl 5 U ,  t h e  q u a n t i t i e s  

(1.10) 

are bounded by c o n s t a n t  C ,  independent  of a ,  b and n ;  

b. fo.- any f i x e d  a and b, n o t  e q u a l  t o  z e r o ,  

One of t h e  most cormncln ways t o  c o n s t r u c t  a 
consist,s of the  fol1owir.g. L e t  w ( S )  be  any f u n c t i o n ,  which 
sat isf ies  t h e  cond.it;ions 

delta-forn sequence 

(1.12) 
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Let us examine a sequence of functions with the common term 

(1.13) 

According to the second condition of (1.121, for a < 0 < b, - /8 

and, for a < b < 0 or 0 < a < b, 

Further, accdrding to the third condition of (1.121, w ( c )  is 
integrable in each finite interval. We form t'le nonnegative 
continuous function 

Fror.1 the first and second conditions of (1.121, it is seen that 
function F ( n )  isbounded on all axes -- < 7 < +=, by a certain 
constant B and, consequently, 

where B is independent of a, b aid n. In this manner, for w (51 ,  
conditions (1.10) and (1.11) are fulfilled, and the sequenceLfs del ta -  
form. The set of delta-form sequences constructed encompasses 
everything usually used in practice. 
sented, it is seen that the third condition of (1.121 can be 
replaced by the requirement of integribility of the function in 
any finite interval. 

From the reasoning Pre- 

We now examine the determination of more complex operations 
with generalized functions. All these operations result by 
distribution to generalized functions of the corresponding opera- 
tions for common functions, expressed in the language of 
functionals. Let f(5) be a continuous function, having a continu- 
ous derivative f'(6). Then,by parti-1 integration, considering 
that each basic functicn $ ( c )  reverts id en tic all,^ to zero outside 
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a certain interval, we obtain 

where $'(C) also is a basic function. In accorc'ance with this, 
derivative f' of generalized function f is defined by the rela- 
tionship 

or, in symbolic form, 

It can be shown that the functional defined by formula (1.14) 
is linear and continuous. In this manner, in distinction from 
ordinary functions, all generalized functions have a generalized 
derivative and, more than that, they are infinitely differentiable. 

Further, in distinction from ord!.nary functions, a converging 
sequence of generalized functions can always be differentiated 
termwise. Actually, let sequence fl, f a ,  . . . , fn, . . . con- 
verge towards f, in the Sense of generalized functions. Then, 
i r  acccrdance with (1.8b) and (1.14a), foz any basic function 
J, ( 5 )  , we hdve 

i.e., 

or 

- /9  

(1.15a) 

(1.15b) 

Let us now examine the convolstion of seneralized functions. 
Let f ( 5 )  ai;d g ( [ )  be crdinary functions, absolutely integrable 
over the entire line. Then, their convolution is defined by 
the relationship 
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(I. 16) 

in which h(() also is an absolutely integrable functiun. The 
functional of , defined by function h(€,), in accordance with 
<1.2), is written in the following form, 

Therefore, the convolution of two generalized functions f and g 
is defined by the relationship 

or, in symbo’.ic form, 

(1.17b) 

It can be shown that the inmr functimal (1.17) is an infinitely 
differentiable function, b u t  not finite and, consequently, 
it does not belong to space X I .  Therefore, in the general case, 
the outer functional (1.17) is n o t  defined. However, in suffi- 
ciently general assumptions, relationship (1.171, nevertheless, 
has meaning. We introduce only one condition,which is sufficient 
for the purposes of this work. 

It is sai? that a generalized function (functional) f is 
concentrated ir, zlosed interval [a, b], if, for any basic function 
$ ( S i  , which reverts to zero in the opeil interval ( e  - E ,  b + E), 
for as small as desired E > 0, there is an equality <f, = 0. 
Such generalized functions (functionals) also are caiied finite. 
If regular functional (1.2), determined by ordinary function frg), 
is concentrated in closed interval [a ,  b], this means that 
fur,zLims f(E) almost everywhere (with the exception of the set of 
zero measure points) outside [a, bl revert to zero. 

tt2 following proposition. Fox the truth of equali-ty (1.171, it 
is sufficient that one of the generalized fmctions f, 9 be con- 
centrated in a certain, bounded closed i.iiterva1. 

For Con~~Olutionof generalized functions f and g ,  there is 

For some bounded operations, the convolution of genei-aftzed 
functions are continuocs, For the generalized functicns defined 
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I1 
If 

X , ,  there is the following simple, s-ifficient condition: /10 
the sequence of generalized functions fl, f2, f3, . . . , fn, - . , concentrated in aboun6d interval, converges toward a 

generalized function (obviously a;so concentrated in the same 
intervel), for generalized fucticn g, there is the equality 

or, in symbolic form, 

In the preceding statement, it was assumed that basic functions $ ( c )  and functionals <f, $> take only real values. However, 
complex generalized functions can be defined in precissly the same 
way. For this, it is necessary to change from a space of real 
basic functions to the space of complex basic functions (i.e., 
infinitely differentiable and finite), which we, as before, will 
designate X,. In this case, each complex, locally integrable 
function f ( 5 )  corresponds to functional 

(1.2a) 

where the asterisk designates a complexly conjugate quantity. 
Relationships (1.6) and (1.7) take the form 

(1.6a) 

and 

where a is a complex number and a(x) is a complex, infinitely 
differentiable function. Each complex generalized function can 
be compared with the complexly corjugated generalized function 
f*, by the formula 

(1.18) 



The results obtained for real generalized functions, basicrilly, 
are automatically Carrie6 over to the complex case, with allnwance 
for changes flowing from relationships (1.2a), (1,6a), (1.7a) and 
(1.18). 

We have given a brief survey of certain operations for gener- 
alized functions, defined by means of linear, continuous functionals 
in basic space X,. 
note that theie are many other basic spaces, in which generalized 
functions can be defined in the same manner. In this case, the 
properties of generalized functions and definition of operations 
are basically preserved. The set of generalized functions 
determined in different basic spaces do not coincide, although 
they intersect. It turns out that, for solution of different 
problems, it is convenient to use different basic spaces. 

Before we proceed to subsequent material, we 

We now proceed to examination of Fourier transforms of gener- 
allLed functiqns. In this case, we will always understand X, to 
be the space of the complex basic functions defined above. For 
any basic function $ ( E ) ,  we examine the Fourier transform, with 
the complex parameter = A + i . r  

(1.19) 

Assum’ng here that T = 0 ,  we obtain an ordinary Fourier 
transform $ ( A ) .  Since J, ( 5 )  is a finite function (the integral 
actually is taken over a finite interval), in (1.19), differen- 
tiation over R car. be carried out an unlimi ed number of times 
under the integral sign and, consequently, i ( C ? )  is an int2gral 
analytical function. 

Derilratives $ ( c )  pertain to space K: . Therefore, by 
partial inteqration, we hzve 

Continuing this process, we find that, for any real number q 

(1.20) 

Further, f3r any basic function $ ( c ) ,  by virtue of its finite 
nature, such an a > 0 is found, that $ ( E . )  reverts to 0, for 

2 a. Then, in accordance with (1.20), we have an estimate 
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(1.21) 

?, where constants C and a depend on concrete function v(n . The 
resulting relatio%ships show that the Fourier transform $(f?) of 
each basic function $ ( E ) ,  reverting to zero for a, is an 
integral analytical function, which satisfies inequality (1.21) 
to infinity. 

The reverse statement can be proved in a similar mannx: 
any integral analytical function 3 (SI), having the properties 
specified, is the Fourier transform of a certain infinitely 
differentiable function $(C), which reverts to zero at 1 a, 
in which 

(1.22) 

Thus, a Fourier transform, considering its singleness, 
establishes a nutually unambiguous correspondence between all 
functions of space X, and the set 2, of all integral analytical 
functions, which satisfy condition (1.21) to infinity, i.e., 
Y ,  =Ti and x, = 2, . z 

The limiting transi ion can be detenn'ned in set Z1, con- 

$ ( 5 )  converge to form + ( E ) .  Th's definition i2 equivalent to 
tfe following 
converges to $ ( S I )  in %$, if, for any real q, the following in- 
equality is satisfied 

sidering that functions 5 w n ( R )  converge to $ ( S I ) ,  if their forms 

sequence $I(fi) , ;Ez(n), . . - , J l n ( R ) ,  . . . 

c 

with constant 
formly toward ' j j y h ]  in each finite interval, 
ticn, the convergence of set 'jt, foms a basic space, in which, 
by means of linear, continuous functionals, generalized functions 
can also be determined. 

and a, not depecdent on n, and Sn(h) tends uni- 
With such a defixi- 

With generalized functj.a,ns in basic space "f-,, operations can 
be carried out, similar tc\ those introduced above, for generalized 
functions in X, space. The regular functional has the same form 
(1.2a). The operations of swnming and multiplication by number 
and the limiting transition contain nothing new. The operation of 
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multiplication by function a ($21, formally defined by the same 
equzlity (1.7a), now becomes fulfillable for a narrower class of 
fur-ctions, which satisfy conditions of the type 

(1.23) 

fer certain b, q and C. - /I2 

The derivative of the generzlized function g' = dg/dQ is de- 
fined by the same formula (1.14'. In this case, generalized 
functions in IC, are not oniy ir-tinitely differentiable, but 
analytical. 

Just as for generalized functions in xi, the convolution of 
generalized functions in 2, is defined by formula (1.17). The 
sufficient condition formulated above, in order for deiinition 
(1.17) to have meaning, remain true in this case. The convolution 
operation is continuous for generalized functions in ';ti. 

Since there exists a mutually unambiguous correspondence 
between basic spaces Xi and %,, with preservation of the operations 
of convergence, summation and multiplication by a number, an 
analogous ccrrespondence can be established between linear con- 
tinuous functionals in these spaces, i.e., between generalized 
functions in X, and &. This correspondence is established in 
such a way, that in functionals corresponding absolutely to 
integrable functions, it would be converted into a correspondence 
between a function and its classlcal Fourier transform. 

Let f(c) be any absolutely integrable function and ?f>, 
Fourier transform. Then, for any function $ ( e )  from Xi and *ts 
Fourier transform $ ( A )  from Y,, there is a correlation [181 

its 

(1.24) 

which is called the Parseval equality. This correlation is taken 
for definition of generalized function '1) in space sa, for any 
given generalized unction f in space T,. The generalized func- 
tion (functional) is called the Fourier transform of generalized 
function (functional) f, and this fact is written in symbolic 
form 

For the Fourier transform of generalized functions, the 
usual differentiation formulas are preserved. They can be written 
in symbolic form 

14 



( 5 . 2 5 )  

her._. 2 : K) is a polynominal. 

ani; 2 i n  'f, is converted into f in J( , ,  by the same formula (1.24) 
(reaL from right to left), so that 

Ti .3  inverse Fourier transform operator q-' is determined 

or, irA ,ymbolic form, 

The fact is extensively used in analysis, that the Fourier 
transfonn convolttions of integrable functio s f(6) acd g(E) 

these functions. Under certain conditions, this equality holds 
true for generalized functions. 

of tw] generalized functions fl and f2, defined in space X , ,  one 
is fi-iite, i.e., i t  is concentrated in abounded interval, there 
occurs the formi-' a 

equa: the product of the Fourier transforms f (A) and g(X) of 

Ne present here only the simplest sufficient conditions. If, 

-- 
rdr: * f z l  = fif, . (1.27) 

As 6n examgle illustrating * * e  execution of a transforma- /13 - tion, by means cf generalizing functions and explaining the mean- 
ing of a generalized Fourier transform, we introduce one result 
which is uzeful f k  . the future. We have 

(1.28) 

For - , s  A, .- - m ,  the right side of this equality, as it is easy to 

se , is a delta-fxm sequence, so that 
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(I. 29a) 

in the sense of generalized functions. It is easy to see that 
the left side becomes the generalized Fourier transform of unity 
i.e., fmctions WE), for all 5 taking the value of l J a  In fact, 
in conformance with (1.2 ) ,  taking the complex conjugated quanti- 
ties in beth parts of the equality, and multiplying by the basic 
function $ ( A )  and integrating over A, we obtain 

or, proceeding to the limit and using 6-function definition (1.5) 

(1.29b) 

Now, let f ( c )  be any locally integrable function, growing as 
161 + ~ 3 ,  no faster than a certain positive power of l(1. Such a 
function can always be represented in the form 

where f (5) is a function, absolutely integraLle on the entire 
straighhine -OD < 5 < + w .  

transform, the following limit exists 
Since f ( 5 )  has a classical Fourier 

Since \ 

(1.31) 

the moduli of all terms of the sequence in the left side of 
equality(l.31) are bounded by a fixed constant and, consequently, 
it also  converges, in the e n s  of generalized functions. 
Applying the operation (-d9/dxf + l>m to both sides of (1.31) and 
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(1.33) 

If $51 is an ordinary, integrable random process, the inte- 
gral on the right side has meaning, and functional (1.33) is 
called regular. The o9erations on the generalized random 
processes are determined, in the same manner, as for the deter- 
minategeneralized functions, and they basically have the same 
properties. Thus, for example, for derivative x ' i c ) ,  we have 

< X ' , . y > = < X , - y - ' >  . (1.34) 

We note that, while the derivative of a common random process 
may "Otexist in sny grobabilistic sense, the derivative of a general- 
ized random process always exists, and it is a generalized random 
process. Thus, in the set of generalized random processes, for 
example, random processes are included, with uncorrelated values, 
obtained by differentiation of the processes with uncorrelated 
increments. 

The mean value (mathematical expectation) of the generalized 
random process X ( 5 )  is called a functicnal 

if it is defined and continuous in xi. 
The correlation functional of generalized random process X (5 ) 

is called a bilinear functional 

(1.36) 

if it is defined in JC, and is continuous over each 02 the argu- 
ments J 1 1 ( 5 )  and $2  ( 5 ) .  If X ( 5 )  is a common integrable process, 
in accordance with (1.33) 

(1.37) 

since 
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using the possibility of an unlimited differentiation of the 
sequence of qeneralized functions, we finally find that, in the 
generalized sense, 

(1.32) 

i.e., for the functions presented in the form of (1,301, there 
always e ists a generalized Fourier transform. This result could 
have been obtained immediately, by applying formula ( 1 . 2 5 )  to 
(1.31). 

With this, we end the brief survey of the properties of 
generalized functions and operations on them. 

The advantages of the use of generalized functions is de- /l4 - termined by the fact that the operations can be performed 
formally by known rules, when, in the ordinary sense, they do not 
exist. For interpretation of the final result, it is not ex- 
pressed by normal functions; it is convenient to use the 
capability of representation of any generalized function, in the 
form of the limit of a sequence of normal functions, which con- 
verge, in the sense of generalized functions. 

We note that all the relationships presented remain true, 
in the case, when all the functions depend on, not one variable, 
but on m independent variables. In this case, functions m of 
variables having the same properties as with one variable, must 
be used with basic spacez Xm and 2,. Natural changes must be 
incorporated into the formul.as, assuming that 

t dA = d X , d X ,  

L bC. 

Just as in the case of determinate functions, generalized 
random processes (functions) can be defined in space X i .  If 
each basic function $ ( c )  is compared to random quantity C($) , 
it is said that the random functional has been assigned. A 
continuous, linear random functionaldefines the correlated 
random prwess x([), which can be written in symbolic form 
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I n  t h e  case of wh i t e  n o i s e  Y(() 

(1.38) 

J u s t  as i n  t h e  case o f  d e t e r m i n a t e  func t io i l s ,  g e n e r a l i z e d  
rapdom processes  can be d e f i n e d  i n  o t h e r  basic spaces .  

2.  Study of Connection Between Uniform 
( i n  t h e  Broad Sense) P rocesses  and 

White Noise 

W e  w i l l  use t h e  c a p i t a l  l e t t e r s  of t h e  L a t i n  a lphabe t  X, Y ,  
2 ,  etc., f o r  d e s i g n a t i o n s  of random processes  ( i n  Che g e n e r a l  case, 
of complex o n e s ) ,  and t h e  c o r r e s p o n d h g  lower case letters x, y ,  
z ,  etc., f o r  d e s i g n a t i o n s o f t h e i r  r e a l i z a t i o n s .  For t i m e  and 
frequency, w e  r e t a i n  t h e  des igna t ior i s  : and f ;  i n  311 o t h e r  cases, 
w e  w i l l  d e s i g n a t e  t h e  independent  v a r i a b l e s  by thc lower-case 
l e t te rs  of t h e  Greek a l p h a b e t  e ,  A ,  etc. W e  d e s i g n a t e  ave rag ing  
over  a set of r e a l i z a t i o n s  by a l i n e  
t a k i n g  tlie m7thematical  e x p e c t a t i o n ,  
f irst  t w q  f z a t u r e s  o f  random process  

above, and t h e  o p e r a t o r  f o r  
by t h e  l e t t e r  E. For t h e  
X ( C ) ,  w e  havg  r e s p e c t i v e l y ,  

The co rF lex ly  con juga te  q u a n t i t i e s  are des igna ted  by t h e  
a s t e r i s k  s u p e r s c r i p t  i n  t h e  l a s t  formula.  

The c o r r e l a t i o n  f u n c t i o n  and d i s p e r s i o n  a r e  are d e f i n e d  by 
t h e  r e l a t i o n s h i p s  

F u r t h e r ,  du r ing  t h e  e n t i r e  work, we will c o n s i d e r  random p r o c e s s e s  
t o  be c e n t e r e d ,  i . e . ,  i t  is assumed t h a t  

M , ( T ) = O  , K , ( l i  ,la) = B x ( y i  1 J a )  . 
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We now turn to certain results of the general theory of 
random processes [7, 8 ,  10, 141. In order to emphasize that the 
independent variable does not mean time without fail, random 
process HE) w j t h  a zero mean, finite dispersion and a corre- 
lation function, dependent only on the difference of the arguments 

we will call uniform, in the broad meaning. 

is assumed that a random process has a correlation function, which 
is continuous on line 6 
This condition is necegsary and sufficient FCr continuity of 
the process, which is quadratic on the average, i.e., for the 
truth of 

Subsequently, if it is not stipulated to the contrary, it - /16 

= 5, bnd, consequently everywhere). 

The correlation function of such random processes can always be 
represented in the form 

where functioq 3 ( A )  is real, diminishinq and hounded, 

7(+4 - 7(-0., = K J O )  = a, , 
is called the spectral function of process X ( [ ) .  
1: given by the relationship 

In turn, y(A) 

where X and A, are any two points of continuity of this function. 
If func&ionT(x)+ 
mable derivative (spectral density) 

is absolutely continuous, i.e., it has a sum- 
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(2.3) and ( 2 . 4 )  change into the Wiener-Kint:hine relationship 

where q = 5, - c 2 .  
grable according to Riemann 

In cases when the spectral density is inte- 

*Q) - 
- r d  f W X )  d X  * 

there a lso  are ordinary Riemann integrals in relationships (2.5). 

We require random processes Z(X), with zero mean and incre- 
ments, which are uncorrelated in the nonintersecting intervals 

It usually is assumed here that the increment has a finite dis- 
persion 

(2.7) 

A l l  the properties of such processes connected with increments 
dc. not depend on supplements with an arbitrary f'constant") random 
value. For example, Z ( X )  can be replaced by Z(X) - Z!X 1, i.e., 
the process, taking zero values at point 1 with proba&ility 1, 
can be considered. If a determinate real Function is defined 

in accordance with ( 2 . 6 1 ,  for A 2  2 A 1  



(2.9) 

i.E., T ( x )  is a nondiminishing, bounded (see 2.7) function, so 
that, at each pctint A ,  there exist bounds on the left T(x-01 
and on the rigzt ?(x+o).  Such functions, as is known, can have 
the largest cour+qble set of discontinuity points af the first 
order. In accordance with (2.2), it follows from relationship 
(2.9) that, at each point of continuity 7fA) (i.e., almost every- 
where) , the process with uncorrelated increments Z(X) is continu- 
ous in the mean square. 

Subsequently, we frequently will use the concept of conver- 
gence of random qualities in the mean square to random quantity 
S 

if 

1 . i . m .  S, = S , 
n 4 - s  

(2.10) 

occurs. We introduce the following convenient sign of convergence. 
The sequence of random quantities S . . . with finite 
dispersions , convzrge in the mean s&aEa tE3A certain random 
quantity S; when, and only when 

as m + 00 and n + m independently of each other. In this case, 
of course, 

(2 .  lob) 

The followinq proposition also is useful for the future: If - -  - 
sequences S L l ,  S 2 1  S1 . . . and SZ1, S 2 2 1  
the mean square $0 ranJorn quantities S1 and S23 

. . . converge in 
S2, respectively, 

(2.11) 
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We recall how the Riemann integral is determiiied from random 
function X ( 5 )  

(2.12a) 

and the Riemann-Stieltjes integral, from random function Y ( S )  

where (a, b) is a finite or an infinite interval and g ( S )  i ~ .  
determinate function. Let there be 

Q = 3 1 <  T t ( .  . '  ' T; . . .  < Zn+* = g  

a certain partitioning of interval (a, b) and 

the sums approximating integrals (2.12a) and (2.12b) respective-/18 - 
ly. If, as n + Q), 

(Ti, '  4 ; ~ i  1 3 0 , j =  !,2, - . * t  n 
ti 

and S converge in the mean sc:unre to 
certain random quan sP ities 3fnand c l t ,  independently of the specific 
and integral sunIs 

partitioning of interval (a ,  b), it is said that inteqrals (2.10) 
and (2.111 exist in the mean square sense and equal these 
random quantities. Necessary and sufficient conditions for this, 
in accordance with (2.10a), consist of the existence of the 
Riemarn integral 

(2.13) 
Q Q  

and .:he Riemann-Stieltjes integral 
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of o r d i n a r y  d.zterminate f u n c t i o n s .  I n  t h e  case when Y ( C 1  i s  a 
random process  w i t h  u n c o r r c l a t e d  increments ,  i n  accordance w j c ; :  
( 2 . 6 )  and ( 2 . 9 1 ,  t h e  l a t t e r  condition can be  re:Jresented i n  
e q u i v a l e n t  form 

(2.14b) 

i 'f,  as  a + - 0 0 ,  b .. + m ,  i n t e g r a l s  (2 .13 ) ,  and ( 2 . 1 4 )  converge,  
t h e  c o r r e s p w d i n g  i n t e g r a l s  of t h e  random f u n c t i o n s  ( 2 . 1 2 a )  and 
(2.12b) a l so  converge i n  t h z  mean squa re  sense ,  and t h e  l i m i t i n g  
random q u a n t i t i e s  Yi and 3, are c a l l e d  t h e  va lues  of t h e s e  i n t e -  
grals 4-n t h e  mean square ,  ove r  an i r f i n i t e  i n t e r v a l .  

S t o c h a s t i c  i n t e g r a l s  ( 2 . 1 2 a )  and (2.12b) d e f i n e d  i n  t h i s  
manner have t h e  p r o p e r t i e s  of o r d i n a r y  i n t e g r a l s .  For example, 
if, b e s i d e  s a t i s f a c t i o n  o f  c o n d i t i o n s  ensu r ing  t h e  e x i s t e n c e  of 
i n t e g r a l  ( 2 . 1 4 ) ,  i t  i s  r e q u i r e d  t h a t  func t ion  g ( 6 )  have, i n  
i n t e r v a l  (a, b) ,  i n t e g r a b l e  accord ing  t o  Riemann, d e r i v a t i v e  g '  ( 5 )  , 
a formula f3r i n t e g r a t i o n  by p a r t s  occu r s  

W e  now examine t h e  s t o c h a s t i c  i n t e g r a l  
t o d  

( 2 . 1 6 )  

where Z ( n )  is a p rocess  w i t h  u n c o r r e l a t e d  increments ,  having a 
bounded d i s p e r s i o n .  I f  t h e  i n t e g r a l  on t h e  r j g h t  s ide,  f o r  each 
6 ,  converges i n  t h e  mean squa re ,  formula ( 2 . 1 6 )  d e f i n e s  random 
process  X ( 0 ,  which, i n  t u r n ,  can be i n t e g r a t e d .  I f  g ( q ,  4; and 
h ( 5 )  are cont inuous  f u n c t i o n s ,  s a t i s f y i n g  t h e  c o n d i t i o n s  
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whore "(?I = I d 2 \ , ' l i  in the repeated integral, thc. order of /I9 
integration can be changed, i.e., the followins relationship h o l T  
true 

e 

(2.18) 

If, beside these conditions, there exists the improper integral 

(2.18) occurs for the infinite interval (a, h). 

We now proceed to establishment of the connection between 
unirorm processes and white noise. In accordacce with general 
theory, for any uniform process X ( < ) ,  there exists such a process 
with uncorrelated increments Z ( A ) ,  that, for each fixed 5 ,  there 
is a spectral representation 

where the integral converges in the mean square, and 9 t h )  is a 
function of spectral representation (2.3) of the correlation 
funztion of the uniform process. In this case, process Z ( A )  can 
be defined by the formula 

( 2 . 2 0 )  

where X I  arid X 2  are any two points of contjnuity cJf functionT(x). 

increments, having a finite dispfrsion 
On t'ie other hand, for any process Z ( A )  with uncorreiated 
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, i n  accordance wi th  (2 .14b) ,  t h e  i n t e g r a l  on t h e  
r i g h t  s i d e  of 2.19) converges i n  t h e  mean squa re  for each  f i x e d  
for any h 2  

5 and, consequent ly ,  it d e f i n e s  a uniform random process ,  t h e  
c o r r e l a t i o n  f u n c t i o n  of which satisfies r e l a t i o n s h i p  (2.3). 

I n  t h i s  manner, r e l a t i o n s h i p s  (2.15) and (2.20) e s t a b l i s h  a 
corrzspondence between t h e  uniform prccesses and p r o c e s s e s  w i t h  
u n c o r r e l a t e d  increments ,  d e f i n e d  a t  t h e  beginning  o f  t h i s  s e c t i o n .  

W e  now use  t h e  g e n e r a l i z e d  f u n c t i o n  a p p a r a t u s  p r e s e n t e d  i n  
t h e  preceding  s e c t i o n .  L e t  f u n c t i o n  + i s )  belong t o  b a s i c  space  
X ,  , i0e-t be i n f i n i t e i y  d i f f e r e n t i a b l e ,  and r e v e r t  i d e n t i c a l l y  
t o  z e r o  o u t s i d e  a c e r t a i n  f i n i t e  i n t e r v a l .  Its F o u r i e r  t r a n s -  
form 

where R = A + i a  always e x i s t s ,  belorigs t o  basic space  %,=% 
and, i n  accc,c(;ance w i t h  ( 1 . 2 1 ) ,  on  the a c t u a l  s x i s  (for u = 0) , 
it s a t i s f i e s  t h e  i n e q u a l i t y  

for any n > 0. 

For any f u n c t i o n  $ ( A )  

and, consequent ly  (see (2 .14b  t h e  i n t e g z a l  

(2 .21)  

(2.22a) 

converges i n  the mean squa re  and d e f i n e s  a random, l i n e a r ,  con- 
t i n u o u s  f u n c t i o n a l  i n  basic space  2,= Since ,  i n  t h i s  case, 
formula f o r  pa r t i a l  i n t e z r a t i o n  (2.15) ho lds  true and, i n  
accordance w i t h  (2 .211 ,  y ( - - )  = y ( + ~ a )  = 0, from (2 .22a )  and (I . 1 4 )  
we o b t a i n  

(2 .22b)  

I n  t h i s  manner, t h e  g e n e r a l i z e d  f u n c t i o n  f i x e d  by f u n c t i o n a l  ( 2 . 2 2 )  
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is derivative Z ' ( X )  of process with uncorrelated kcrements Z ( x ) .  

We now multiply both sides of equality (2.19) by 4 ( F )  and 
the integrate over 5. Considering that, in this case, the order 
of integration car: be changed in the repeated integral (see 
2.18) and, using (2.22), we obtain 

(2.23) 

where (a, b) is an interval, outside of which finite fur-ztion 
J i ( 6 )  reverts identically to zero. By comparjaon of this result 
with (1.24), we see that X ( 5 )  and Z ' ( X )  are Fourier transforms 
of each other, in the meaning of generalized functions, so that 
the following symbolic relationships can be written 

(2.24) 

(2.25) 

with consideration of the singleness of the forward and reverse 
Fourier transforms, it follows from here that there exists a 
mutually unmbiguous relationship between the generalized deriv- 
atitzs Z ' ( X )  of the random processes with uncorrelated increments 
and t'7e complex, uniform (in the broad sense) processes X ( 5 f .  

We dwell brieflyon certain properties of the generalized, 
random process Z ' ( X ) .  For this, we examine the correlation 
fur- c t i ona 1 

In accordance with (2.22) , 

(2.26) 

(2.27) 
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where the first equality is symbolic and the integral of Z ' ( X )  
is understoad in the Sense of generalizes functions. Con- 
sidering that Z(X) is a process with uncorrelated increments and 

/21 

from (2 .271,  we obtain 

(2 .28 )  

where the first equality, again, is symbolic. It can be shown 
that any function of tso variables 3 XI, X 1 from the basic 
functional space 2,. X, can be represente3, as the limit of a 
sequence of linear combinations 

N 

where $i(A) and 
function of one v a riablz; consequently, relationship ( 2 . 2 8 )  
defines, in basic space ztl=z, a linear, continuous functional, 
which can be written symbolically in the form 

( A )  belong to the basic space Xi=X, is a 

(2 .29)  

3c that, according to generai definition (1.4), correlation 
iunction K,, (A1, X2) of process 2' ( A )  is a generalized function. 

nondirninishing function T(X) has a derivative, which can be 
integrated in each finite interval \A1, X2), i.e., for any X I  < X2, 
there exists the relationshi;. 

If the process with uncorrelated increments Z ( X )  is such that 

by transforming the last integral in ( 2 . 2 8 1 ,  we obtain the symbolic 
equality 
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(2.31) 

from which it follows that, in the sense of generalized functions, 

where S ( A )  is the &-function. In this - mner, by satisfaction of 
condition (2 .301,  process Z ' ( A )  is white noise, as it was defined 
in the introduction. 

In *,mnsry, we find that a mutually unambiguous correspondence 
exists betxeen white noise and uniform (in the broad sense) pro- 
cesses, ha-ing spectral density W ( h )  = T'(hl . 
spectral function of the uniform (in the broad sense) process 
X ! O ,  as is known, can be expanded into the sum of three com- 
ponents 

The nondiminishing, bounded function ' J t h ) ,  which is the 

( 2 . 3 3 )  

where ',',(A! is an absolutely continuous function, having de- - /22 
rivative T ( h l ,  
wise function, with jumps in a finite or countable number of 
points: 'T,t.i). is a continuous function, distinct from constants, 
the derivative of which almost everywhere, i.e., with the 
exception of the set of zero measurement points, equals zero. 

lntegrable in the Lebesgue sense: TztA) is a step- 

The presence of jumps in function C f t X )  is closely connected 
with the properties of correlation function Kx(q) = Kx(C1 - 52) 
of process X ( 5 )  

( 2 . 3 4 )  

where smming is carried out over all points of the discontinuity 
5j' 

29 



Since the singular component ?;(AI does not have practical 
meaning, satisfaction of condition (2.30) actually means that the 
corresponding uniform, random process does not have discrete 
components. 

We note that, when condition (2.30) is not satisfied, 
realization of process Z ' ( X )  hzs a still more complicated and 
random nature, than in the case of white noise. In the next 
sec:ion, it will be shown that, by their ergodic properties, 
processes which do not satisfy condition (2.30), are not suitable 
for  our p- 3oses. More than that, certain limitations have to be 
imposed on the old derivative functions 3(A1 Therefore, 
subsequently, we will always assume that condition (2.38) is 
satisfied, in which the integral exists, in the Riemann sense. 

Up to now, in making all contributions, we have explicitly 
or implicitly used the limited nature of functions ? ( A )  . 
However, this limitation is not required in proceeding to gen- 
eralized functions. Actually, for  a uniform (in the broad sense) 
generalized process given by the symbolic equality 

we have 

In the sense of generalized functions, the Fourier transform on 
the right side exists (see section l), for  any exponential growth 
function 

(2.35) 

where m is an arbitrary real number and 7,(Xl is a function, 
integrable within infinite limits. It is evident that, in exe- 
cution of (2.353, function also is an exponential growth 
function and, consequently, all the relationships, beginning with 
(2.23), hold true for such functions. In particular, if, for 
b = const > 0, 

then I 
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and, consequently, X ( 5 )  is a uniform (in the broad sense) white 
noise, with intensity b. 

The considerations introduced permit the correspondence 
between white noise and uniform (in the broad sense) processes to 
be expanded, to the case when both processes are generalized. 

3 .  Theory of Estimation of Intonsity 
Acccrding to Individual Realizazions -- 

Now, let generalized random process Y(t) be a nonstationary -- /23 
white noise, with correlation function 

Then, its Fourier transform (in the sense of generalized functions) 
S(f) is a uniform (in the broad sense), random process, with 
correlation function E,(fl - f2) and spectral density 

Processes Y(t) and S(f) are connected by the symbolic relation- 
ships 

The theory of obtaining estimatss of spectral density of actual 
uniform processes according to iidividual realizations can be gen- 
eralizec to the case of complex processes. On the basis of (3.1) 
and (3.21, this permits an estimate of the intensity by(t) to be 
obtained by realization of process S ( f ) .  Let 

I s ( { )  for If1 C f/2 , 

I 0 

s,q1 = I ( 3 . 4 )  

for I j l  >F','2 
be a trumated realization of 2rocess S(f), and 

(3.5) 
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is i t s  F o u r i e r  t ransform.  W e  form a f u n c t i o n ,  analogous t o  a 
periodogram. 

Then, us ing  known r e l a t i o n s h i p s ,  t h e  estimate 4 (t) of the  
i n t e n s i t y  by(t) can be r e p r e s e n t e d  i n  t h e  follogfng form 

(3.6) 

(3.7) 

where t h e  a c t u a l  weight f u n c t i o n s  liJi(t) s a t i s f y  t h e  c o n d i t i o n s  

and,  moreover, they form a 6-form sequence (see s e c t i o n  I ) .  I n  
accordance w i t h  (1.13; ,  w i t h  i n t r o d u c t i o n  of parameter  f u n c t i o n  
F 

we  reckon 

where w ( t )  i s  any f u n c t i o n  w i t h  an i n t e g r a b l e  square  

which satisfies c o n d i t i o n s  (3 .8 ) .  For such f u n c t i o n s ,  

- /24  

(3.9) 

(3.10) 

(3.11) 

where l i m i t s  exist, a t  l e a s t  on t h e  average.  



i n  accordance wi th  (3.9) , w e  have For  G---cj1 , 

(3.12) 

A d d i t i o n a l l y ,  w e  w i l l  assume f u n c t i o n  w ( t )  i s  such ,  t h a t  $(f) i s  
bounded on a l l  axes  and has  a d e r i v a t i v e  a t  z e r o ,  a l though it i s  
mi la te ra l .  I n  t h i s  case, t h e r e  e x i s t s  t h e  h i g h e s t  number y > 1, 
f o r  which 

and,  on a l l  axes, -m < f < + m ,  

where A and B are c e r t a i n  c o n s t a n t s .  I f ,  f o r  example, t h e r e  

e x i s t s  ~ “ ( 0 )  and w ’ ( 0 )  = 0 ,  t h e n ,  y = 2. 
Y Y 
% % 

In  t h e  r e l a t i o n s h i p s  p re sen ted  above, L a n d  AT are t h e  
e f f e c t i v e  bandwidth of f u n c t i o n s  GL(f) aad w-ct) r e s p e c t i v e l y .  
It is convenient ,  f o r  example, t o  suppose 

where t h e  c o n s t a n t s  are g iven  by t h e  e x p r e s s i o n s  

(3.14) 

(3 .15)  

The d e f i n i t i o n  of t h e  f u n c t i o n  di(t) Given h e r e  encompasses a l l  
cases encountered i n  p r a c t i c e .  I n  p a r t i c u l a r ,  when 

(3.16) 
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in accordance with (3.7) and (3.91, we obtain the estimate - /25 

(3.17) 

practical application of which, by use of digital computer, has 
been studied in detail by the authors, in work [17]. 

In order for the estimate t$s~(t) to be asymptotically un- 
biased and consistent in process S(f) and, consequently, in 
white noise Y(t) corresponding to it, certain limitations must be 
imposed. First, uniform (in the broad sense) process S(f) should 
be ergodic relative to the first and second moments, i.e., the 
following relations should be satisfied 

(3.18) 

A necessary and sufficient condition of ergodicity relative to 
the first moment is 

F 

Concerning ergodicity relative to the correlation function, for 
Gaussian and certain other (for example, linear) processes, a 
necessary ard sufficient condition is 

(3.20) 

Since, in expansion of spectral function (2.33), we disre- 
garded the singular component T, for the processes indicated, in 
accordance with (2.34), a necessary and sufficient cor_:ition of 
er9odlcitY is absolute continuity of the spectral fuiction or, 
which is the same thing, existence of a derivative, Lnich is in- 
tegrable in each finite interval (see 2.30). We recall that the 
derivative of the spectral function is spectral density W,(t) of 
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process S ( f )  or intensity by(t) of white noise Y(t). 

are conditions (3.19) and (3.20) satisfied, but 
With the assumptions made, it is easy to show that, not only 

However, as F -t m ,  in order for the estimate @SF(t) to be asymp- 
totically unbiased and consistent, an additional limitation must 
be imposed on the correlation function (or spectral density) of 
process S (f) . We suppose that 

By the use of the reverse Fourier transform of the convolution, 
the expression f o r  estimate ( 3 . 7 )  can be rewritten in the  form 

where 

(3.23) 

We examine the expression for shifting the estimate Rr@s~(t)]. 
In accordance with (3.2) and (3.221, 

(3 2 4 )  
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We always can select such a w(t), that condition 

> 
Y - 9  

is satisfied (see 3.13, 3.21). Then, on consideration that 

on all axes, and with the use of (3.13) and (3.211, as F + 0 0 ,  we 
obtain the asymptotic relatj-onships 

where @lit) and Q,(t) are continuous functions. Since, in 
accordance with (3 .9  ) , 

we finally find that, for a sufficiently large F, 

With the assumptions made, for dispersion of the estimate a[ \9,,(t)] , 
there is an asymptotic formula [22l 

(3.26) 

where c is a constant. The ch;l.lge in AT should be so matched /27 
with change in F, that. the square of the displacement and the 
dispersion of the estifiate change at the same rate. In accord- 
ance with (3.25) and (3.261, in this case, 

- 

( 3 . 2 7 )  
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It is seen from these relationships that, for q < 1, convergence 
of the estimates towards the intensity is very slow and, for 
q > 2 ,  further increase in q slightly affects the convergence 
rate. In such a manner that the process could be actually 
analyzed, the absolute value of correlation function I KS (a) I 
should decrease more rapidly than l/a2+ E (see 3.21) and, conse- 
quently, the spectral density WS(t) of process ;(f) ,-!r Intensity 
by(t) of white noise Y(t)) should have at least one continuous 
derivative. 

We call estimstes considered estimates of the first kind. 
Together with them, estimstes of the seconc! kind are widespread. 
They frequently are called 'lins+rumental," since, in form, they 
are a mathematical recording of an electronic spectrameter line 
diagram. Let h (f,t ) be such an actual function of f (to is a 
parameter), thahTthe Aodule of its Fourier transform 

(3.28) 

is an even function 

and it differs appreciably from zero, only in a band with effective 
width AT around the value of t, equal to to 
estimate of the second kind of white noise intensi y is written 
in the form 

Then, an 
and -tv 

where 

(3.29) 

(3.30) 

Here, furrtions hAT(f, tc! and hsT(f, 0) can be interpreted as 
transient pulse functions of a narrow band filter and a low 
frequency filter. With the use of (3.23) dnd ( 3 . 3 0 1 ,  for calcu- 
lation of the estimate, the requirement of physics1 realizability 
of the filters is not obligatory. A s  6T + 0, in order for the 
estimate Df the white noise intensity cb AT(t) to be asymptotically 
unbiased ar,d consistent, a connection sffould be established 
between 6T and AT, the nature of which is determined by the same 
considerations, as for estimates of the first kind. In particular, 
the following relationship should be satisfied 
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Forrrlulas (3.7) and (3.29) permit determinatioii of the Zstimate 
of the white noise intensity Y(t), by ckrrying out a series @f 
operations, to realize uniform (in a broad sense) pocess S ( f ) ,  
corresponding to it. However, if the white noise is fixed, it is 
impossible to calculate realization S(f) directly, by means of 
a Fourier transform, since realization y(t> is a generalized 
function, and its valve is not definite at a single point. In 
this situation, in order to gike formulas ( 3 . 7 )  and 13.29) 
actual meaning, the fact must be used that any generalized 
function -an be obtained, as the limit of a sequencz of ordinary/28 __ 
functions, if the convergence is understood in the sense of gen- 
eralize2 functiolns (see section 1). 

If Yn(t) is a random function with finite dispersion, an6 
@(t) is any infiniteiy differentiable function, which revert; tc 
zero outside a certain finite interval, then, integral 

(3.32) 

always exists, in the mean square sense, and it Jefines a ' . inedr, 
continuous, random functional, in bilssc functional space X, . Let 
Yl(t), Y2(+-) , Y3(t), . . . be a sequence of ordinary random pro- 
cesses with finite dispersion, wbich ccnverges, in die sense of 
generalized functions, to white noise Y (t) , with cc--rcw--tiCr. 
function 

This means that, for each fixed function Ql(t) frem Yi, the 
sequence of random quantities 

converges, in the mean square sense, towards the value 'Y, $1> 
of a random functional, which fixes the white noise, i.e., 

( 3 . 3 4 )  

In accordance xiti? (2.11), it follows from here that 
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where $l(t) and $2(t) are any t w o  f u n c t i o n s  from 311. 
f u r t h e r ,  t h e  same as i n  t h e  change from (2.28)  t o  (2 .291 ,  from 
(3.35) w e  o b t a i n  

Reasoning 

+&I& 

m a w  LLm I I ' i ' ( ts , ta)  Y,tt,) Y," ( t,) d t, d t, = 
r o O  -&-- 

where Jl(tl, t2) is any f u n c t i o n  from basic space X,. This  is  
e q u i v a l e n t  t o  t h e  fac t  (see s e c t i o n  1) t h a t ,  as m -f m and n + m 

independent ly  o f  each  o t h e r ,  

( 3 . 3 7 )  

i n  t h e  sense  of convergence of g e n e r a l i z e d  f u n c t i o n s .  Conversely,  
if ( 3 . 3 7 )  t?kes p l a c e ,  and t h a t  means ( Z .  3f ) a second e q u a l i t y  
( 3 . 3 5 )  fo l lows  from t h i s ,  s i n c e  f u n c t i o n s  t J l ( t l ) $ * ( t 2 )  belo9g t o  
space X a .  Then, t h e  f i r s t  e q u a l i t y  (3.35) shows $ha t  a l i m i t  
e x i s t s  

and, consequent ly ,  i n  accordance w i t h  (2.101, in t h e  meaAi squa re  
s e n s e ,  sequence of random q c a n t i t i e s  (3.33) converges.  I n  t h i s  /29 
manner, f u l f i l l m e n t  of  r e l a t i o n s h i p  ( 3 . 3 7 )  i s  a necessa ry  and 
s u f f i c i e n t  c o n d i t i o n  for convergence of sequence of random pro- 
cesses Y l ( t ) ,  Y ( t ) ,  Y 3 ( t ) ,  . . . , w i t h  f i n i t e  d i s p e r s i o n ,  t o  
wh i t e  n o i s e  Y ( t f ,  i n  t h e  s e n s e  of g e n e r a l i z e d  f u 9 c t i o n s .  S ince  
t h e  F o u r i e r  t ransform does not d i s r u p t  t h e  convergence, from h e r e  
t h e r e  also  fo i lows  convergence o f  sequence S 1  (f) , S2 (f) , 53 (f) , . . . . where 

( 3 . 3 8 )  

towards s t a t i m a r y  p rocess  S(f), corr?sponding t o  whi t e  n o i s e  Y ( t ) .  
I t  i s  seen  from t h e  r e s u l t s  ob ta ined  t h a t  a n  i n f i n i t e  set  of  
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sequences of common random processes can be constructed which 
converge in the sense indicated, tQwards cne and the same white 
noise. 

For simplicity, we assume that white noise Y(t) and all 
Yl(t), YZ(t), etc., differ from zero, or?ly in a finite interval 
(a, b). We introduce the designation 

where 

Then 

(3.40) 

since, in this case, the integration order can be changed, W i t h  
consideration of continuity of the convolution (see section I), 
it follows from (3 .40 )  and convergence Tn(t) + Y(t), that 

in the sense of generalized functions. Further, by the use of 
the reverse Fourier transform of the convolution of the general 
ized functions (see section I) and considering that 

we transform the latter relationship to 
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Since a common random function is on the right, convergence 
actaally takes place in the ordinary s <e. By repeating the 
reasoning presented, but for functions two variables, by means 
cf (3.40), we find that, from convergence 

P 

In this menner, in accordance with (2.10), we firally obtain 

(3.41) 

We designate the result of application of operator (3.7) to 
realization yn(t) of random process Yn (t) by @nSF (t) . Then, 
with ( 3 . 3 9 )  and (3.40) taken into account, we obtain 

(3.42) 

It follows from (3.41) that, as n + -, the finite-dimensional 
distributions of Grobabilities of processes YnSF(t) converge to 
finite-dimensional distributions of process YsF(t). 
arises: ugder what condition does Convergence of distribution 
function i - ,~x)  of estimate $nSF to distrfbution function Tjx) of 
estimate P,,, for each fixed t, flow from this? We ndte that, 
fro9 convergence of the distributions at each point of continuity 
of the limiting function, convergence of the moments still does 
follow. In our case, the liziting estimate $,, h a s  the first two 
finite moments and, in order for 

The question 
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permissibility of transition to the limit under the integral sign 
is required. 

Now, we will suppose that all processes Yn(t) have continuocs 
realizations yn(t), with probability 1. This case is of the 
createstinterest to us, since, for example, the majority of 
processes which describe oscillations of physical or mechanical 
systems have such a property. Having substituted the square of 
the modulc, in the form of the product ofthe complexly conjugate 
quantities, in formula ( 3 . 4 2 )  and by changing the order of inte- 
gration, we see [13] that, for fixed t, $I~SF is a continuous 
quadratic functiocal in the space of all functions, continuous 
in (a, b). Then, in accordance with the known theorem [7, 81 ,  
for convergence of distribution of estfm3tes I $ ~ S F  to distribution 
OsF, with fixed t, it is sufficient that processes Yn(t), for all 
n 2nd tl, t2, satisfy the condition 

(3.43) 

where a, B and Harecertain positive constants. In order to 
more realistically represent the nature of these limitations, we 
note that condition (3.43) is fulfilled, for example, for a = 2 
and B = 1, when correlation functions Kyn(tl, t2) of processes - /31 
Y,(t), on line tl = tz and, consequently, everywhere, have the 
bounded, compositederivative 

(3.43a) 

i.e., for processes, which are differentiable in the r e a n  square 
sense. 

Of course, condition (3.43) is not necessary. For example, 
the model of the random process, which we use in the succeeding 
sections, does not satisfy this condition. In the partial case 
ofa determinate amplitude, we give this process with the 
equation (see 4.2) 

(3.44) 

where G!t) is a real, uniform, Markov process, by(t) is a real 
determirate function different from zero only in the interval 
(a, b), %-is a positive parameter dependent on n, in which 
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( 3 . 4 5 )  

Calculation of the second and fourth moments 
probability of transition ( 4 . 6 )  gives 

by the use of the 

It is easy to see that Yl(t), Y (t) , Y3(t) , . . . form a sequence 
which converges to white noise,2with intensity by(t) , since, as 
n + Q) (Dn + m )  

(3.47) 

and, consequently, 

For fixed t, we calculate the mathematical expectation and second 
momglt of the estimate @nsF(t). From (3.421, we obtain 

( 3 . 4 9 )  

and 
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From the properties of the functions included in these formulas, 
it follows that, with the assumptions made earlier, one can only 
proceed to the limit as n -* -, under the signs of the first 
integrals in these formulas. We substitute the expression for  
Kyn(Ill, 0 2 )  from ( 3 . 4 6 )  in ( 3 . 4 9 ) .  Proceeding to the limit as 
n -t 0 0 ,  we obtain 

Since the integral stands inside, with a Fejer kerne l  
considering the properties of function U-(t) 
obtain 

1181, 
as F + 0 0 ,  we finally 

In a similar manner, by substitution of the expression for the 
fourth moment from (3.46) in (3.501, we obtain 

(3.51b) 

and, correspondingly, 
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or, considering (3.52a) 

(3.52b) 

It is seen from the first relationship of (3.46) that, on the 
= tl, correlation function Kyn(tl, t2) does not have a 
erivative. In this manner, in the example being considered, 

con- /33 
despite the fact that condition (3.43a) is not fulfilled, not 

verge to the distribution of estimate @SF, but the firsf two 
moments, at least (see 3.51). Estimate IPnSF(t) of the white noise 
intensity is asymptoticaily unbiased and consistent ir, this case 
(see 3.52). 

only does the probability distribution of estimates @ns - 

In all the formulas presented, the order of transition to the 
limit over n and F is significant. This holds true, not only for 
the example, but in the general case. It is seen from formulas 
(3.49) and (3.50) that, if initially F + a, both limits revert 
to zero. 

In this manner, for $ns~(t) to be a sufficiently effective 
estimate of intensity, the following condition must be fulfilled 

(3.53) 

where, in the general case,i/%K is on the order of the effective 
length of the correlation process Yn(t) and can be estimated, for 
example, by the formula 

(3.54) 

In the frequency region corresponding to Y (t), random process 
s,(c), in interval 
by properties, in the broad sense of the process. 

< *ak, is sufficientyy close tc uniform 

The resulting estimates $nSF(t) of white noise intensity 
pexi l i i t  generalizatiofi. In fact, if, in determination of YnSr(t) 
(see 3.39), in place of QF(f), use is made of any function 

(3.55) 
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where h (t) is the transition pulse function of the low frequency 
filter ?not obligatorily physically realizable) , permitting change 
in the order of integration in the relationship 

(3.56) 

the entire subsequent course of reasoning remains in force, and 
we obtain, for the estimate $nSF(t!, the formula 

(3.57) 

where F is the effective fi!.ter ban2width in the frequency region 

. + -  

(3.58) 

We note that, in derivation of all. relationships for the estimate - /34 
@n F(t), we assumed the white noise Y (t) and Drocesses Y (t) , 
Yz?t), e%. , reverting to zero outside the interval (a, h )  . 
evident that the same results are obtain& in the case, when the 
random processes indicated decrease sufficiently quickly to in- 
finity. If the processes do not becrease, realizations, abridged 
in interval (a, b), can be examined. In this case, the additional 
error of the estimate will be noted, only in a small vicinity of 
the ends of the interval, on the order of the effective bandwidth 
AT of weight function uL(t), 

By use of the estimate of the second kind (3.29), an analo- 
gous theory can be developed for them. We are limited here, by 
the fact that we present the final form of the estimate of white 
noise intensity. With the USE. of the inverse Fomier transform 
of the convolution, from (3.301, we have 

It is 

(3.59) 

Ry substitution of (3.59) in (3.291, we finally obtain 
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(3.60) 

This estimate of the second kind has the same structure as the 
generalized estimate of the first kind (3.57), up to the tran- 
sition to the tifie region. In turn, the estimate of the first 
kind (3.57) has the structure of the estimate of the second kind 
(3.601, up to the transition to the time region. In this manner, 
the estimates of the first and second kinds are dual, with respect 
to each other. It follows from this that all properties of 
estimates of the first kind can be reformulated for estimates of 
the second kind. From the fact that an estimate, for example, 
of the first kind for intensity has the same structure as an 
estimate of the second kind for spectral density, total symmetry 
of f and t follow, in obtaining estimates of the quadratic char- 
acteristics, by averaging over these variables. In other words, 
if random process X(t) is such that, in the time or frequency 
regions, it permits averaging over a large interval acd, conse- 
quently, averaging can be carried out in a small interval over 
a different variakle, for such a process the methods examined 
permit estimates of the quadratic characteristics to be obtained 
with small displacement and dispersion. 

Now, let an tictual, ncystationary, f.4deband process X(t), 
with correlation function K'dtl, t2), be given. In accordance 
with the preceding, for eacf: '-:bite noise Y (t) , with correlation 
function Ky(tl, t ) = by(tl)6(&, - t2), there is an infinite set 
of sequences Yl(tj), YZ(t), . . .>\, Y (t), . . . of common random 
processes, which converge to it, lp the sense of generalized 
functions. We examine in greater which is important for 
the future, the question of the of inclbsion of a 
given broadband, nonstationary sequence Yn(t) 
(n = 1, 2, . . . ) ,  as a term in it 

\ 

and also, how 20 eLctimate the closeness of X(t) to white noise 
Y(t) 

As before, we will assume that all the processes considered 
differ from zero, only in a finite interval (a, b). We saw 
(3.35) and (1.38) that 
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where q l ( t )  and 1)2 (t) are any f u n c t i o n s  of b a s i c  space  'Xi . - /35 
F u r t h e r ,  l e t  h ( t j  f;) be  a t r a n s i t i o n  p u l s e  f u n c t i o n  of a cer ta in  
l i n e a r  system. Subsequent ly ,  for s i m p l i f i c a t i o n ,  w e  w i l l  assume 
t h a t  h ( t ,  5 )  i s  an i n f i n i t e l y  d i f f e r e n t i a b l e  f u n c t i o n  of  bo th  
arguments,  i n t e g r a b l e  o v e r  t h e  e n t i r e  p l a n e  (t, E ) ,  a t  least  w i t h  
a square .  (For p h y s i c a l l y  r e a l i z a b l e  systems h ( t ,  E )  i d e n t i c a l l y  
r e v e r t s  t o  ze ro  i n  t h e  f i r s t  quadrant.,  and it undergoes a dis-  
c o n t i n u i t y  a t  i t s  boundary.)  I n  many c a s e s ,  t h e  l i n e a r  systems 
encountered i n  p r a c t i c e  s a t i s f y  t h i s  requirement .  With t k e  
assumptions made, f o r  a f i x e d  t ,  any h ( t ,  5 )  can be r e p r e s e n t e d  
a s  t h e  l i m i t  of  a sequence of  f u n c t i o n s  of % , , c o n v e r g i n g  t o  h ( t ,  
51, i n  any f i n i t e  i n t e r v a l ,  un i formly ,  t o g e t h e r  w i t h  t h e  de r iva -  
t i v e s  of any o r d e r  121. It fo l lows  from t h i s  t h a t  r e l a t i o n s h i p  
(3 .61 )  remains t r u e  f o r  any two h l ( t ,  c ) ,  h 2 ( t ,  51, i .e.,  

(3.62) 

I t  i s  e v i d e n t  t h a t ,  f o r  any sequence Y n ( c ) ,  t h i s  r e l a t i o n s h i p  
(to t h e  p o i n t ,  l i k e  (3.61)) cannot  be w r i t t e n ,  f o r  any f i n i t e  n ,  
i n  t h e  form of an approximate e q u a l i t y .  A c t u a l l y ,  f o r  any c o r r e -  
l a t i o n  f u n c t i o n  K y r , ( C l ,  c2) ,however small t h e  e f f e c t i v e  c o r r e l a t i o n  
l e n g t h ,  such a s h a r p l y  changing h, ( t ,  5 )  and h 2 ( t ,  5 )  can bo 
found, t h a t  t h e  l e f t  s i d e  w i l l  d i r f e r  as s t r o n g l y  as desired from 
t h e  r i g h t .  T h i s  means t h a t  t h e  c l o s e n e s s  of K Y n ( E  5 ) t o  K y ( S l r  

s e t  o f  r r a n s i t x o n  pufse  f n c t i o n s  
c 2 )  = b ( 5 , ) ~ 7 ( $ ~  - 5 - 1 ,  makes it s e n s i b l a  to c o n s i  a' er $ h e  d e r i v e d  

on ly  ir. a d e f i n i t e  way. 

W e  s e p a r a t e  t h i s  set o f  c o n d i t i m s ,  so t h a t  each of t h e  v a l u e s  
i n  it 

i s  bounded by i t s  c o n s t a n t ,  i .e . ,  

where 
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(3.64) 

(3.65) 

With the assumptions made, the limiting transition for the non- 
negative function 

(3.66) 

can give the estimate [ 6 ]  

where the constant Cyn is its own for each Y . Further, in an 
analogous manner, it can be shown that, in tEe case being con- 
sidered, C + 0 uniformly in the separated set, i.e., for any 
E > 0, sucfInan N can be found that, for n > N, 

where C1 is the constant from relationship (3.63). 
ner, in the set of trnnsition pulse functions separated, for a 
sufficiently large n, the limiting relationship (3.62) can be 
replaced by an approximate equality. 

In this man-/36 - 

We now turn to the question of inclusion of a given non- 
stationary wideband process X(t) in the sequence Y (t), converging 
to white noise. 
cretely defining process X(t), it is practically impossible to 
answer the question and, what is more, to construct the specified 
sequence Y (t), including process X ( t )  in it; therefore, we limit 
ourselves €0 qualitative considerations, based on the approximate 
asymptotic relationships, obtained for processes X ( c ) ,  with a 
very short correlation length 8,. 

It should immediately be stated &at, not con- 

We will assume that 

(3.69) 
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where T, and Th are characteristic intervals of chanye in dis- 
persim of equal Kx(c, 5 )  and of pulse function h(t, c), of a 
certain set, fixed by relationships of the types ( 3 . 6 3 )  and ( 3 . 6 4 1 .  
We introduce the designations 

k=(~l+L32)/2 , p = T L - - T L  , 
n 
W , p )  = K , ( a t E ,  d! - g) . ( 3 . 7 0 )  

Then .. 

where 

(3.72) 

KZ(t , t2) is the correlation function of the response of a 
system wi$h pulse function 1 2, 5) to the action of process X ( 5 ) .  
It is evident that, for actual processes with a small correlation 
length B function b ( a )  > 0. In accordance with the preceding, 

of the set formed- Of cours-function b,(t;), defined by relation- 
ship ( 3 . 7 2 1 ,  is approximately interpreted as the effective in- 
tensity of the nonstationary wideband process considered X(c) or, 
in accordance with ( B . 5 )  , as have the i,istantaneous spectium of 
this process. Thus, K,(cl, k 2 )  can be represented approximately 
in the following form 

this app-oximate 9' equafity will be true, for all pulse functions 

where 
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It is evident that, for any a, 

( 3 . 7 4 )  

- / 37  

( 3 . 7 5 )  

We introduce the sequence 

UJh!d, 8) = e, w x  ( d ,  i” e> , ( 3 . 7 6 )  

in accordance with the results of section where 1, + OJ as n + 03. 

1, we see that, for any fixed a, function wlm(a, B )  forms a 6- 
form sequence, in which a l l  functions are normalized, i.e., they 
satisfy the same condition ( 3 . 7 5 )  a s  wx(cx, 1 3 ) .  
so that (d. = 0, for n = m, we suppose 

By selecting d l ,  

It is seen from relationship ( 3 . 7 6 )  that, as n + 03 (k, + Q)), 
function ~ + - ( a ,  6 )  stops depending on a, and we obtain, in the 
limit, 

in the sense of the generalized functions. According to ( 3 . 7 3 1 ,  

By the use of the approximations adopted, the following can be 
written 

( 3 . 8 0 )  

In this manner, funct.ior.s Kyn(S1, 5,) are at least asymptotically 
positively defined and, consequently, they can serve as corre- 
lation functions of certain random processes. It follows irom 
this that, in accordance with ( 3 . 7 8 ) ,  the necessary condition is 
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fulfilled, 
convergir,g in the sense of generalize6 furTtions to a certain 
white noise Y (61 ,  in which Ym(5) = X ( S ) .  

for existence of sequence of random processes Yn(C! 

We now consider how the Clc,s?ness of prxess X(t) to the 
limiting white noise Y I r  can be estimated. In solution of 
practical problems, we lsually are interested in the acticn cf 
process X(t) in linear systems, described by one or more l'amilies 
of transition pulse functions, whic'. depend on a series of 
parameters. In the majority of cas::s, tl-e carrier frequency fo 
and the nffective bandwidth of tF.o frequency characteristic of 
the Tystem Afo serve as these parameters. -'he transition pulse 
func' ons used hf (t, 5 ;  Afo), as a rule, are bounded, and growth 
02 the modulus of their derivatives with increase in order is 
completely defined by parameters fo and A f o .  Therefore, in order 
to include the family of transition pulse functions considered 
in a certain set (3.63), quantities fo and Afo must be. bounded. 
The characteristic interval Th, in which the transition pulse 
function changes noticeably, can be estimated by the relaLion- 
ship 

0 

(3.81) 

In derivir,g formula (3.i11, we F L W  tbat, by fulfillment of the 
inequalities 

(3.82) 

where Afeff is the effective width of the amplitude spectrum 
of the process, and aonstationary widebani; process X f t )  is close 
to white noise, with interyity b,(t) (see 3.72). Closeiz. is 
understood in the sense that its action on any linear system &th 
a transition function belonging to the set formed, with sufficient 
accuracy, deterined by formcla (3.68), is similar to t h e  action 
of the euuivalent white noise. In this manner, these inequalities 
(3.82) r~lve the qualitative conditions of closeness of widetand 
process X(t) to the limiting white noise and, consequently, the 
truth of the approximate expression ior the correlation function 
of the response of system (3.71a) 

- /38 

with a sufficient degree of accuracy. h quantitative refinerrtent 
of these inequalities is givcm by mean; of study of concrete 
model processes in the subsequent sections. 
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We ikote ;n conclusion that the cor,dition of normalization 
of all func.cions ‘LI~ (a, B )  (see 3,76), in representation of the 
correlation functions of wideband process ( 3 . 7 3 )  is very signifi- 
cant. In fact, we can write 

n 
by roeny methods, with the m e  of different 6-form sequences w (a, 
8 ) .  
of ra,,dom 
intensity ix(E). 

As n + m, each such scquence will correspond to its sequ&ce 
rocesses Yn ( E , ) ,  converging to white noise ! ? ( E ) ,  with 

If the sequence is not normalized, i.e., 

(3 .84)  

then, by carrying out nornaiization, from ( 3 . 8 3 1 ,  we obtain 

By substitution of this expression for Kx(El, C 2 )  in (3.71a), we 
obtain 

where q , in principle, can he any numbPr. Thus, for the function 
b (a) ivself, rclationship (3.71a) is not fulfilled, and this 
mgans %hat wideband process X ( E , )  is far from the linitiiig white 
noise Y ( E , )  with intensity 6 (a). It is evident that the process 
X ( € )  must be included in a sequence, in which the limiting white 
noise is close to wideband process X ( E ) .  Fortunately, the 
,heory of estimation of white noise intensity stated above shows 
that, if we analyze the realization of a certain wideband ocess 
by means of the methcds developed, we always automatically obtain 
(good or poor, depending on conditions) an intensity of precisely 
the white noise closest to our process. 
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CHAPTER I1 

APPLICATION OF ESTIMATES TO ANALYSIS OF 
NONSTATIONP-RY WIDEBAND PROCESSES 

4. Modeling of Nonstationary Random 
Processes 

We consider a family of nonstationary random processes, which/39 
depend on a series of parameters, an6 we show that, in defini- 
ticn of the relationships between these parameters, processes can 
be obtained, as close as desired (in the sense of section 3 )  to 
nonstationary white noise. Moreover, we introduce the necessary 
formulas for calculation of individual realizations of all possible 
wideband noises, which are nonstationary and wideband to differ- 
ent degrzes. 

As a model randoa procss, wz take an expression of the type 

where t > --Q) is the time, f 2 C is a fixed carrier frequency, 
R(t) is an arbitrary, dimensionless, determinate functiop and H(t) 
and G(t) are randGm processes (amplituds and phase), with reali- 
zations h (t) and g (t), respectively. Amplitude H(t) has the 
dimensionality of process [ X I ,  and phase G(t) is a dimension- 
less function. Realization x(t) of process X(t) is written in the 
form 

n 

In order to have the possibility of constructing realization 
x(t) from point to point, with At intervals, we take known, 
stationary, ir lependent. Markof f processes a s  H (t 1 and G (t ) [ 16 I . 
The conaitional probability of transition of the amplitude 
fluctuation 

( 4 . 3 )  

where 
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r > 0 and p > 0 are fixed parameters. The conditional probability 
3f the phase transition 

where q > 0 is a fixed parameter. 

As T + O D ,  the conditional probability densities are con- 
verted into stationary, unidimensional distributions 

(4 .7 )  

since, for a hrkoff process, knowing the probability of tran- - /40 
sition and the unidimensicnal probability, any n-dimensional 
distribution density can be written, it is easy- to show that all 
n-dimensional distributions are uniform over time. In this manner, 
processes H(t) and G(t) are stationary in the narrow sense. 

We n@te in passing that, if function R ( t )  = R = const, since 
processes H(t) and G(t) are independent by definition, and G(t) 
is distributed uniformly in the interval 10.2 T I ,  arkoff process 
X(t) will be stationary in the narrow sen%. The mathematical 
expectation, correlation function and spectral density, in this 
case, have the form: 

m , = u ,  ( 4 . 9 )  

!4.10) 
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(4.11) 

To avoid misunderstanding, we note that the definition of spectral 
density of stationary processes given in Chapter I (2.51, which 
is true for both positive and negative frequencies, differs (is 
twice as small: from that which we use in practice, and which is 
true only for positive frequencies. However, we will not change 
the designation W,(f) for spectral density. Just as was done in 
[17], the ergodicity relative to the mathematical expectation 
and the correlation moment uf stationary process X(t) can be shown. 

In the general case, there is no difficulty in calculating 
the mathematical expectation, correlation function and instantane- 
ous power spectrum: 

wL,=o,  (4.12) 

(4.13) 

(4.14) 

We now consider conditions under which processes (4.1-4.8) 
are close to white noise, in the broad sense. We assume in 
formula (4.13) 

(4.15) r " = p + y = a  . 
2 The quantities r2, p and q have different physical meanings: 

is the dimension of power [ X Z I  and p and q are frequency dimensions 
[ f l :  therefore, equality (4.15) should be understood as 

r 

(4.16) 

where k is a proportionality factor, having the dimension of the 
spectral power density 

(4.17) 

subsequently, we will consider that9 has the dimensions of - /41 
frequency, arid we will use the equalities 
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(4.18) 

where t h e  va lue  of c o e f f i c i e n t  k w i l l  depend on t h e  c o n c r e t e  
p h y s i c a l  scales of v a l u e s  of f u n c t i o n s  X ( t )  and frequency f .  

I n  accordance w i t h  t h e  r e s u l t  . . t ed  a t  t h e  end of s e c t i o n  
3 ,  i n  order t o  f i n d  t h e  w h i t e  n o i s e  i n t e n s i t y ,  t c  which t h e  model 
p rocess  converges,  as 53 + Q;, t h e  c o r r e l a t i o n  f u n c t i o n  must be 
r ep resen ted ,  i n  t h e  form of t h e  product  of a s imple  f u n c t i o n  and 
t h e  normalized element  of t h e  &-form sequence. By c a l - c u l a t i n g  
t h e  i n t e g r a l  

i n  conformar.ce w i t h  (4.13) and (4.181, we o b t a i n  

( 4 . 1 9 )  

where 

is  t h e  normalized element  o f  t h e  6-form sequence, i . e . ,  

S ince  6-form f u n c t i o n  % ( T I  d i f f e r s  from z e r o  on ly  a+ s m a l l  \ T I  

( 4 . 2 0 )  

( 4 . 2 1 )  

and, consequent ly ,  f u n c t i o n  g[t) = Ka@(t)/(a'+ 4V'f: ) i s  t h e  
i n t e n s i t y  of t h e  n o n s t a t i o n a r y  white n o i s e ,  which is o b t a i n e d  from 
t h e  i n i t i a l  model p rocess  (4.1-4.81, by f u l f i l l m e n t  of c o n d i t i o n  
(4.18)  and as 8 + 0 0 .  

W e  a t t empt  t o  determine what t h e  c o n d i t i o n  2) -+ 00 mea s i n  
practice.  
i . e . ,  t h e  p rocess  i s  s t a t i c n a r y .  By t u r n i n g  t o  t h e  formula 

I n i t i a l l y ,  we examine t h e  case, when R 2 ( t )  = I?' = c o n s t ,  
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for s p e c t r a l  d e n s i t y  ( 4 . 1 1 1 ,  w i t h  (4.18) taken  i n t o  account ,  

(4 .22)  

it is easy  t o  show t h a t  t h e  v a l u e  of 3 Is p r o p o r t i o n a l  t o  t h e  
effective bandwidth A f e f f  of p r o c e s s  X ( t ) .  Actually, f o r  a spec- 
t r a l  d e n s i t y  which is symmetrical relative f we have H' 

where 

is  t h e  dispersion of t h e  p r o c e s s ,  and 

W-X =W,({,, Z K R Z  

is t h e  maximum value of t h e  spectral d e n s i  

(4 .23 )  

( 4 . 2 4 )  

(4 .25)  

y. From t h i s ,  G f e f f -  
P/2 . The s p e c t r a l  d e n s i t i e s  bf  wideband p rocesses  have a strong1.y 
nonsymmetrical shape r e l a t i v e  t o  fH;  t h e r e f o r e ,  t h e  e f f e c t i v e  
band for them is  approximately h a l f  a s  l a r g e  

a 
Afeff = v 

and, consequent ly ,  

2 r 8 R L  
a= + 47'); . W,Cf, =w,, == 

(4 .26 )  

(4 .27)  

It i s  known t h a t  wideband p rocesses  are d e f i n e d  by the c o n d i t i o n  
Afeff 2 fH, o r ,  i n  our  cace ,  

(4 .28 )  

I n  p a r t i c u l a r ,  for fH = 0 ,  t h e r e  w i l l  be a l a r g e  band process X ( t ) ,  
a t  any 5b > 0. 

and ( 4 . 2 6 )  t h a t 2  + Q) e n t a i l s  an i n c r e a s e  i n  d i s p e r s i o n  a d  
A s  sho'ild have been expec ted ,  i t  is  seen  from formulas ( 4 . 2 4 )  
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broadening the effective band of the process, with unchanged 
intensity 8 = ~aRl’/(a&+ 4 v L  jt) . 

It is evident that, under actual conditions, the degree of 
closeness of wideband process X(t) to white noise, in the frequency 
region from 0 to Afeff, depends or! the relationship between the 
duration of observation of the process (the characteristic time 
scale of the problem) T, and the time correlation Bo. This re- 
lationship can be expressed i n  the form 

By somehow defining the time correlation Bo, for example, as 

(4.30) 

for all r 2 B o ,  where E > o  is some small number ( E  
dependence can be obtained between parameters 2) and the time corre- 
lation B o  

11, a 

i 
B e = + ( * )  

As a + QO, B o  + 0. Condition (4 .29 )  takes the form 

or, with (4.26) taken into account, 

(4.31) 

(4.32a) 

Finally, (4.18), (4.28) and (4.32) give us the relationship for 
selection of the necessary models from the entire family of 
processes (4.1-4.8) . 

In the general case of nonstatimary noise, relationships 
(4.18) and ( 4 . 2 8 )  are preserved, and quantity Tx in formula (4.32) 
takes on the meaning of the characteristic scale of the non- 
stationary behavior cf intensity b (t) . 

In section 6 ,  we report further explanation of the 
practical content of conditior, (4.32), as well as study of certain 

proceed to construction of individual realizations of model 
processes by means of digital computer. 

other properties of model and actual noises, and here, we - /43 
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5. Obtaining Realizations of Model Processes 
by the Monte Carlo Method', bv Means of - - 
Digital  Computer 

To obtain individual realizations of random process (4.1-4.8) 
in t i m e  interval 0 5 t S T, we use the normal procedure of the 
Monte Carlo method [31. Let At be the digitization step of 
process X ( t )  and n be the number of points of realization of the 
process in interval T = nAt, Realizations of the amplitude H(t) 
and phase Z ( L i  fluctuations and process X(t) a t  discrete moments 
of time 0, At, 2At, . . . , (n - ?)At, are designated, respec- 

hj, gj, x tively, 

into account, are written in t h e  form: 

Cj = 1, 2, . . . n). j 
Tke unidimensional density distributions, with (4.18) taken 

and the conditional probabilities of the transition will be: 

where 

(5.3) 

( 5 . 4 )  

(5.5) 

(5 .6)  

60 



The amplitude fluctuations have normal distribution (5.1) 
and (5.3); therefore, calculation of sequence h can be carried 
out as j 

where V .  is a sequence of independent pseudozandom numbers, 
obtainea by programming, which are normally distributed over 
interval [ 0 ,  11. 

For calculation of sequence gj for j = 2 ,  3 , . .  ., n, the con- 
verse of the known theorem [3], on tranSformation of random 
quantity G, with assigned distribution pattern w(g), to random 
quantity P, uniformly distributed over interval [ 0 ,  11, can be 
used 

C 

( 5 . 8 )  

The standard procedure for plotting numbers gj, with a fixed 
distribution psttern v9!gj+1!At, gj) 
random nmlbers P 

for  gj, of equation 

- / 44  
from s sequence of pseudo- 

(obtained lust like V j ,  by programming), 
uniformly distri 2 uted over interval [0, 11, consists of solutjon 

By taking the integral, we obtain the following transcendental 
equation, which can be solved digitally for each gj, for example, 
by the secant method 

(5.10) 
j=2 ,3 ,  . . . ,  n .  

By adding 'rc the  sequence obtained 92, g3, . . . , gn, the value 

we obtain the fullowing final expression, for realization of x(t) 
of random process X(t1, at discrete moments of time 
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xj = R j R j ~ ~ [ 2 n f . ~ t ( j - i ) +  jjj  , (5.12) 
J= i ,2 ,3 ,  ..., k, 

where Rj are values of function R(t) at moments of time 0, At, 
2At, . . . , (n - 1)At. 

To obtain different independent realizations of the same 
process, 
pseudorandom number PI and number mo of the initial pseudorandom 
nurrber L ' ~  simultaneously, i ~ ?  t h e  d i g i t e l  corrpte'r ynerat i .ng  
programs, by a quantity larger than n: 

it is sufficient to change nunher R O  of the initial 

e,>!.+& , m, > m.+ n . (5.13) 

We assume that programs which generate normally distributed numbers 
v -  and uniformly distributed numbers are independent. In particu- 
d r ,  while in the program generating normally distributed numbers, 
the sum k of sequential numbers P. are used, first, number mo 
should be selected from the condihon 

and, second, to obtain another (independent) realizaticn of numbers 
R 1  and ml, the following conditions must be satisfied 

(5.15) 

A program for calculation of normally distributed pseudorandom 
numbers, in which number k = 20, was used in this work. 

A few words on selection of the digitization step At and 
parameter q. The digitization step should be selected from the 
condition 

(5.16) 

since, in changing from the continuous process to a random se- 
quence, superposition of the spectral densities on each frequency 
f takes place, at points (k/At + f) and (k/At - f) (k = 1, 2, - / 4 5  . . . , m ) .  For a wideband, random process, with discrete time 
value 1/ (2At) , the highest ("infinitely" high) frequency has 
meaning, but, as  was shown in section 4 ,  quantity a h a s  the same 
meaning; therefore, it is sufficient to take 
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(5.17) 

The parameter should be selected, so that the value of 
2 (9 - q)At is on the ordei of unity 

(5.18) 

2 since, otherwfse, dispersion ah (see 5.5) of the amplitude 
fluctuation turns out to be very small, i.e., the total level of 
the realization will, for a long period of time t, depend on the 
initial value of the amplitude hl (see 5.71,. Consequently, 
process X(t) will have poor ergodicity with respect to the 
correlalion moment. An example, in which ? ( z -  qlAt = 0 . 0 4 ,  is 
presented in Fig. 1. The estimate ~f the spectral density, cal- 
culated with realization length T = 100 s2c and averaging interval 
Af = 0.1 Hz, which usually gives good results (see [17]), is 
strongly understated. To obtain a correct result, a realization 
of significantly greater duration must be used. We also note 
that it is advisable that not too small (on the order of O.l)a 
value of qAt be taken, since, otherwise, the series over R in 
formula (5.16) will converge slowly. It is clear that this dif- 
ficulty is not fundamental, but computational. 

6. - Practical Questions of Similar 
Transformation cf Wideband 
Processes 

In the solution of practical problems, connected with analy- 
sis of the frequency-time structure of random processes and their 
actions on dynamic systems, the numericai values of the following 
basic characteristics will be kpown ahead of time, as a rule: 
effective bandwidth A f  ff, characteristic scale of transiency Tx 
and the actual limits for the region of permissible values of 
process X(t), for example, for normal centering processes, the 
value of 3 ox. 

As was noted in section 4 ,  the basic qualitative condition, 
under which a wideband process ( A f , f f  >fH) in interval T, can be 
approximately considered to be white noise, in the frequency range 
from f = 0 to f = A f , f f ,  has the form 
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The t i m e  correlation Bo for/46 
wideband processes is in- 
versely proportional to the 
bandwidth Afeff 

Fig. 1. Estimate of spectral den- 
sity, calculated from realization 
of model narrow band process, 
having "weak" ergodicity relative 
to correlation mymeni (At=O.l sec, 
R=1.0, r*=1,0 kg'/cm , p=0.2 Hz, 
q=C.25 Hz, f=0.7 Hz, T=100 sec, 
Af=0.1 Hz, II =20,050, m0=1); 1. 
estimate gxT?f) ; 2. theoretical 
spectral density Wx(f). 

A is a poportionality factor, 
which, for mod21 processes 
based on ( 4 . 2 6 )  and (4.311, 
is given by the formula 

and it is on the order of 
unity. It is clear that 
formula (6.3) can be used 
for the majority of actual 
processes. 

Condition (6.1) takes 
the form 

Subsequently, we will explain 
the practical content of this 
relationship by examples. 
Now, we sive attention to the 

fact that, under this condit-on, no value scaie of function X(t) 
is incl.uded. Therefore, we will call the two random processes 
similar in the spectral sense, if they have identical dimension- 
less coefficients 

regardless of the scale of values of these processes. 

The model random processes considered in section 4 can well 
approxiuate actual processes and, consequently, they can be used 
for devciopment of methods of selection of the optimum parameterr: 
necessary for analysis of experimental data. In order tc com- 
pletely define subsequent reasoning, we will consider that the 
time is measured in seconds (sec), the frequer.cy in Hertz (Hz), 
and that the randoc processes are oscillations of gas pressure, 
measured in (kg/cmL). 
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We present the example of a model wideband noise, with 
specification of a l i  the quantitative relationships between Its 
parameters, and we consider the question of transformations. 
which are similar in the spectral sense, of the parameters 
this noise. For simplicity, we use a stationary noise 
(R(t) = R .- const). Let it be known that the effective bandwidth 
of the random noise is 

and tl;s minimum characteristic time scale of the problem is 
reckoned in tens of seconds 

We also assume that the approximate value of the r.ean square level 
of the oscillations 

and the mean square value of the oversnoot distribution 

are known. It is required thai a noise model be selected, of 
type (4.1-4.8), a.nd that the extent to which it will be close 
to white noise 
E = 0 Hz to f = AfeffHz be determined. 

in the interval Ty and in the frequency rates from 

First of a l l ,  by the use of (4.261, we obtain 

(6.10) 
a = 5.5 I12 * 

In order that, in the interval [0, Afeff], the spectral noise 
level be close to a constant va lue ,  in accordance with ( 4 . 2 8 ) ,  we 
use 
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The diqitizatiol, S , ; ~ P  At, on the basis of (5.171, will be /47 

hi = 0.1 Be': (6.12) 

Further, from ( 4 . 2 4 ) ,  we obtain the value of the freqzency 
average intensity 

Assuming 2. (3 - q ) * A t  = 1 (see 5.181, we determine 

$ = 0.45 Hz, 

and, from (5 .51 ,  it is easy to obtaii 

It follows from (6.13) and (6.151, t h a t  

R = 0,426. 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

We calculate realization (5.12) of a w;deband, discrete, 
random process, with parameters (6.10-6.161, in time interval 
T = 100 sec. A fragment of realization of this process ( E o  = 
20,000, mo = I) is presented in Fig. 2 and, in Figs. 3 and 4 ,  
estimates of the spectral density and intecsity. The theoretical 

random sequepce are plotteci in Fig. 3 ai-d, in Fig. 4 ,  the %eo- 
retical intensity. From comparison of t h e  curves in Fig. ? ,  it 
is seen that, in the frequency region of interest to us, from 
f = 0 Hz to f = Af,,f = 1.38 Hz, the effect of the superimposition 
is small, and the estimate, calculated for the random sequence, 
over the entire frequency range [0 Hz, 5 Hz] well describes the 
corresponding theoretical curve. The estimate of the intensity 
also is close to the value sought (see Fig. 4 ) .  Based on this, 
it can be concluded that this ./idebard model process is close to 
white noise, in the ir.terva1 T, - 23 sec - 50 sec, and in the 
freq-ency range from 0 Hz to 1.38-1.90 Hz. 

spectral densities fo r  a continuous random process and for  a - / 4 8  
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Fig. 2. RealizatioF of model 
stationary noise with random 
amplitude and phctse (At=O.l sec, 
R=0.426,%=5.5 Hz q=0445 Hz, 

t0=20,000, mO=l). 
f~zO.7 Hz, k=l kg 5 / ( ~ m  ~ H Z ) ,  

Fig. 3 .  Estimate of spectral density 
of stationary noise ( A t = O .  1 sec, R = 
0.426,P = 5 . ‘ .  hz, q=O.45 Hz, f -0.7 Hz, 
k = l  k g 2 / ( m 4 = H z ) ,  T=100 sec,Hdf=l.O 
Hz, 110=21),000, mO=l); 1. double theo- 
retical intensity, 2 b=2 kR2; 2. 
estimate $XT (f) : 3 .  theoretical spec- 
t r a l  density of continuous process 
W (f): 4 .  theoretical spectral den- 
fifty of discrete process wxn(f). 

Assuming T, = 20 sec, 
we calculate the coeffi- 
cients of similarity P1 
and P2 (6.5) 

and we consider two pro- 
c2sses, similar to this in 
the spectral sense, the 
effective frequency bands 
of which are equal to 

Af,,ffN55 HZ =e, 
( 6 . 1 8 )  

and the values of ox and 
ah, as before, are 

& - 0.7 k q d  - 0.0 k g / d  , 

Retaining coefficients of 
similarity P1 and P3, for 
the first process, we 
obtain : 
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Fig .  4 .  Estimate of stationary noise 
intensity (6T=0.3 sec, F z 3 . 3 3  Hz, 
Awl5 sec) : 1. estimate JSF(t) ; 2. 
theoretical intensity b. 

which shows that, with use 
of the scale of the region of values of random process X(t), t’ie 
Ecm of the spectrum remains unchanged (coefficients of similarity 
PI and P2 are retained), and on ly  the  intensity scale changes. 
For the secone process (6.19-6.21, 6-23), le: cx be increased to 
a value of 

(6.23! 

We present an example, 

- /49 

(6.24) 

and, correspondingly, 

in which, as before: 

(6.26) 

From formulas (4.26), t5.17). ( 4 . 2 4 1 ,  (5.18) and ( 5 . 5 1 ,  we 
obtain 

(6.27) 

The realization of this k;ocess ( d o  = 10,000, 1 ~ 0  = 3000) is 
presented in Fig, 5 .  
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Since only the values 
of and fE affect the 
form of the spectral den- 
sity (4.22), from a com- 
parison of (6.23) and 
(6.25-6.27), similarity 
of both processes in the 

ec spectral sense follows. 

7. Basic Calculation 
Formulas 

We consider the basic 
stages of obtaining esti- 

fl mates of intensity by the 
first formula (3.75), with 
the use of (3.16), (3.38) 
and (3.39), in the example 

5 length of the realization, 

Fig. 5 .  Realization of model 
stationary "white" noise, with ran- 
dom amplitud an6 phese (At=10-8 sec, of the realization: as 

before, let T be the - /5 0 R=l,a=%-lo E HZ q=4.5.1O6 HZ, fH= 
7.106 Ez, k=l kg /(cm4*€?~), RO=10,000, n the number of points and 
m0=3000). At the digitization Step. 
A s  has already been said, we assume that the mathematical expec- 
tation of the process equals zero. Therefore, the realiza'cion is 
centered beforehand. The Fourier transform of process X(t) is a 
complex function of the real variable f. The real part of the 
realization of complex random process S(f) is presented in Fig. 6 
and, in Fig. 7, its imaginary part. The calculation formulas 
have the form: 

(7.1) 

The real part Re S(f) is an even function of frequency, and the - ,'51 
imaginary part tlm S(f) is odd. Therefore, the plot is made 
in Figs. 6 and 7, only for f 2 0. It is easy to see that approxi- 
mately in the frequency range from f = 0 Hz to f = 0.2.108 Hz, 
and this means, in the frequency region -F/2 I f I F/2 (F/2=Afeff), 
the process is close to stationary (uniform according to argument 
f) and, in the frequency regien f = +0.2*108 Hz, a nonstationary 
transition begins. We calculate the estimate of ihe spectral 
density, truncated in the interval [-F/2, F/2], of complex rar.dom 
process S,(f). 
distinction from the spectral density of the real process, is not 

The spectral density of the complex process, in 
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an even fanction. Therefore, it must be calculated over th 
entire interval from t = -T/2 to t = T/2. For our complex process 
S ( f ) ,  argument t plays the role of frequency, in which the cir- 
cl-astance that X(t) is 3ssigned to the interval [-T/2, T/21, and 
i equal to zero outside it, means that the spectral density of 
t h e  process S(f) equals zero outside this interval. In this 
namer ,  in accordance with the method of work 1171, we select the 
digitization step 6 f  of process S(f) from the conditior, 

i 5 ! = 5 ;  . (7.2) 

The digitization step b f  can be made smaller than 1/T, but, for 
6 f  = l / T ,  the volm1e of subseyiient calculations is at a minimum. 
In our case, T = 4-10'6 sec, i.e., 6 f  = 0.25-10°c Hz. 

Let the number of 
points of the discrete 

k coxrplex process equal  

P =  F/Sf  ( 7 . 3 )  

then, the discrete Fourier 
transform of the truncated 
realization SF (j = 1, 2,  . . 
the form 

, p)  is Litter, in 

P 
a Rt.fJ8 at.ji,& a.piD8 6?4.1ff8 0.5-iU8 Re rsl.(t) = Sf C 

J*' 

\ R e  Sr, C O S [ ~ S S ~ ( ~  - y; t ;  + Fig. 6. Real part of realization of 
complex random prxess in frequency 

+ JW s ~ j  Sin[zxSf(j - y)t] ) region: Re S(f) is an even function 
(T = 4.0.10-6 sec, 6f = 0.25-106 Hz); 1 

1.. stationary section: 2. transition 
section; 3. tail. ( 7 . 4 )  

(7.5) 

YJ Since the imaginarv part equals zero, SF(t) = Re SF (t) . 
simplest estimate cJf the spectral density of process S ( f )  and, 
consequently, the estimate of the intensity of process X(t) will 
be 

The 
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Fig. 7. Imaginary part of realization 
of complex random process in frequency 
region: !L S (f) is an odd function 
(T = 4.0-10'6 sec, bf = 0.25.106 Hz): 
1. stationary section: 2 .  transition 
section; 3 .  tail. 

C 

Fig. 8. Result of Fourier transform 
of realizFtion of complex process 
frorr r'requ.;ncy region to time, at 
F = 1C8 Hz (At = 10-8 sec). 

Curves of functions 
8, (t) , calculated for 
dl-fferent F,are criven in 
Figs. 8,  9 and 10. As 
follows from the results 
of section 3 (see 3.39 and 
3.551, truncation of 
process S(f) in interval 
F and return to the time 
region are equivalent to 
filtration of initial 
process X(t) , in the 
frequency band from f = 0 
to f = F/2. This fact, 
in particular, is repre- 
sented graphically in 
Figs. 8-10. In fact, with 
the maxi um possible F = 

the initial realization 
x(t) (see Fig. 5). With 
decrease in F, realization 
x(t) is more and more 
strongly smoothed. 

108 HZ, ! F(t) is simply 

The Frocedure de- 
scribed, for obtaining 
intensity estimates by 
formulas (7.11, (7.4) and 
(7.6) is vzry laborious, 
from the point of view of 
calculations. The calcu- 
lations can be made 
economical, if the second 
formula is used for 
estimate (3.57). In this 

8;:;; will be function 
an analog of function 

- / 52  obtained by sliding 
averages over interval 
tT of realization x(t) , 

by means of the simplest smoothing operator, the effective fil- 
tration band of which is 112 6T, i.e., 
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Finally, the second formu 
for the estimate (3.57) 
takes the form 

.la 

(7.10) 

Fig. 9. Result of Fourier transform 
of realization of complex process froa 
frequency region tc time, for F = 0 . 4 -  

For sequence x,, we obtain 

d 

c= i  (7.11) 

IO8 Hz (At = Hz). A 

5 .  = X d + t - i  . 
J 

j = I, 2, 3, ...., n - d + I ,  
a n 2  qM s b;td c S ” d - i  , 

(7.12) 9 c x 4  

C 

where - /53 

d =  S T / a t  , j = b T / a t  , 

K =I, 2, 3, * . * , n - d - p z .  
Fiq. 10. Result of Fmrier transform 
of-realization of corrplex process from 
frequency rec,ioi. to time, for F = 0.2- 
lo8 Hz (At = IO”* sec). 

to calculate Sj, we initially determine the xean 

Rapid ca~culati~n of se- 
quences Sj an& r$k can be 
carried o c t  in the follow- 

A ing maniier. For example, 

(7.13) 

and, then, we use the recurrent relation 
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A similar procedure can be used for calculation of @k- 

We note that, if the bulk of the points of the initial reali- 
zation x -  were assigned in the time interyal [-T/2, T/.21, the 
bulk of Joints of the intensity estimate @k will be fixed in a 
smaller interval [-T/2 + 6t(d + cj - 2)/2, T/2 - At(d + g - 21/21. 

Another way of increasing the speed of calculation is to use 
the FFT [fast Fourier transform) algorithm [21], for calculation 
of functions Re S(f), Im S(f! and 2F{t), a sodification of which, 
in the case of an arbitrary number n of values wf a digital 
series, in distinction from the classical n = 2 , is presented in 
the following section. 

8. Modification of FFT (Fast Fourier 
Transform) Method 

The procedure of calculation of estimates of the spectral - / 5 4  
density from one realiza-tion S(f) = RES S(f) + i In S(f) of com- 
plex, centered, stationary, random prc zess S(f), is based on the 
Fourier transform 2 (t), truncated to the interval [-F/2, F/21 
of reali zatim sF (t7 

Actually, the simplest estinate of the spectral density has the 
form (see 7.6) 

( 8 . 2 )  

where the subintegral expression is the periodogram 

and AT is the averaging interval of the periodogram. 

For calculations by coriputer, we have to deal with a continu- 
ous realizaticn sF(f), and with the digital series 
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j = 0 ,  1, 2 ,  . . . , p - 1. The  i n t e g r a l  on t h e  r i g h t  s i d e  of 
(8.11 can be  approximately r ep laced  by t h e  sum 

where 6f i s  t h e  d i g i t i z a t i o n  s t e p  and p = F/6f. With correct 
s e l e c t i o n  of b f ,  SFp (t) w i l l  approximate 3~ (t) , wi th  s u f f i c i e n t  
accuracy. (On s e l e c t i o n  of 6f, see I171 . I  Thus, , , ,nate of 
t h e  s p e c t r a l  d e n s i t y  f o r  

\ P , p  

~. 

t h e  d i g i t a l  series t a k e s  t h e  form 

( 8 . 4 )  

It is  known t h a t ,  a t  p o i n r s  t = k (p6 f )  (k  = 0 ,  1, 2 ,  . . . , 
[p/21 1 p t h e  q u a n t i t i e s  SF (k / (p6 f )  1 = 4 Pk are  t h e  F o u r i e r  co- 
e f f i c i e n t s  of  d i g i t a l  seryes 

, based on r e c u r r e n t  ca lcu-  
o f  complex d i q i t a l  series 

An a lgor i thm w a s  proposc-d i n  work 
l a t i o n  of t h e  F o u r i e r  c o e E f i c i e n t  
S through t h e  F o u r i e r  coef f  i c i e n t g k o f  two a u x i l i a r y  complex 
s&ies, formed from t h o  even and odd e l e m e n t s  o f  series Sj, 
r e s p e c t i v e l y  ( t h e  Coolty-Tukey method). The number of o p e r a t i o n s  
necessary  t o  o b t a i n  a l l  t h e  F o u r i e r  c o e f f i c i e n t s  by t h i s  method 
is  % p log2 p,  i n  p l a c e  of p2 o p e r a t i o n s ,  by d i r e c t  c a l c u l a t i o n  
wi th  formula (8 .5 ) .  F c r  example, f o r  p = 1000, t h e  c a l c u l a t i o n  
t i m e  w i l l  be 1G3 t i m e s  less, than  by t h e  c s u a l  c a l c u l a t i o n s .  
Th i s  method a l so  h a s  t h c  a d d i t i o n a l  advantage t h a t  a l l  t h e  i n t e r -  
mediate c a l c u l a t i o n s  and t h e  f i n a l  r e s u l t  are  s t o r e d  i n  t h e  same 
i n t e r n a l  memory ce l l s  a s  t h e  i n i t i a l  v a l u e s  of t h e  series. The 
Cooley-Tukey pethod i s  r e a l i z e d  most s imply,  i n  t h e  case, when 
t h e  number of  terms of  series S -  i s  an exponent of  t h e  number 2 ,  
p = 2m, s i n c e  t h e  procedure of $ormation of t h e  a u x i l i a r y  series - /55 
can con t inue ,  u n t i l  s p l i t t i n g  of t h e  even and uneven e l e m e n t s  
l e a d s  t o  complex series, c o n s i s t i n g  of one t e r m .  The Fot l r ier  
t ransform o f  t h i s  t e r m  c o i n c i d e s  wi th  i tsel€,  m u l t i p l i e d  by 6 f .  
Statement  of t h e  method and the s t anda rd  programs w r i t t e n  i n  
Algol ,  f o r  t h i s  cme, are i n  work 1 1 2 1 .  



I f  p is n o t  equa l  t o  a n  exponent of 2 ,  a fas t  F o u r i e r  t r a n s -  
form cannot  be r e a l i z e d  w i t h i n  t he  framework of a s i n g l e  a lgo-  
rithm. For example, i n  work [9], i n  t h i s  case, it is  recommended 
t h a t  s p l i t t i n g  i n t o  t w o  series be carried o u t  u n t i l  it becomes 
easy  t o  c a l c u l a t e  the Fourier t r ans fo rm of t h e  a u x i l i a r y  series 
by t h e  usua l  formula ( 8 . 5 ) ,  o r ,  if p has  a s imple  d i v i s o r  q ,  t h a t  
t h e  s e p a r a t i o n  be c a r r i e d  o u t  i n t o  q a u x i l i a r y  series. 

W e  cons ide r  a s imple mod i f i ca t ion  of t h e  f a s t  F o u r i e r  t r a n s -  
form, which pe rmi t s  an e s t i m a t e  of t h e  s p e c t r a l  d e n s i t y  of t y p e  
( 8 . 4 )  t o  be ob ta ined ,  f o r  a d i g i t a l  series of a r b i t r a r y  i e n g t h  p. 
L e t  N = 2m 2 p ,  be t h e  c l o s e s t  t o  the  p power of 2. 
i n i t i a l  series S j  (j = G ,  1, 2, . . . , p - 1) N - p complex z e r o  
v a l u e s ,  and w e  w r i t e  t h e  expres s ion  for t h e  F o u r i e r  c o e f f i c i e n t s  
of t h e  new series 

W e  add t o  

j 

These coeff ic ients  can be c a l c u l a t e d  by m e p s  of t h e  Cooley-Tukey 
method. 
c o e f f i c i e  t s  of t h e  i n i t i a l  series S *  b u t  are cer ta in  v a l u e s  of  

w e  examine t h e  q u e s t i o n  of approximate c a l c u l a t i o n  o f  t h e  i n t e g r a l  
i n  formula ( 8 . 4 ) ,  Dy means of s e v e r a l  v a l u e s  o f  t h e  s u b i n t e g r a l  
func t ion .  

It  is e v i d e n t  Lhat t h e  v a l u e s  of  zpk are n o t  F o u r i e r  

func t ion  6 SF (t) , a t  p o i n t s  t = k/ (N6?j. I n  connec t ion  w i t h  t h i s ,  

Since t h e  nodes of  t h e  f u n c t i o n  be ing  i n t e g r a t e d  are f i x e d ,  
c o n s t r u c t i o n  o f  the  r u l e  of q u a d r a t u r e  must be i n t e r F o l a t e 3 .  W e  
rewrite ( 8 . 4 )  i n  t h e  form 

and w e  w r i t e  t h e  apprcximate va lue  of t he  I n t e g r a l ,  i n  t h c  form of 
a quadra tu re  sum 
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1 AT 
0 Im 

t -  

(8.8) 

It follows from expression ( 8 . 3 )  that 2Fp(t) is a continuous 
and continuously djfferentiable fc;nction and, consequently, the 
periodogram Isp(t) = I?,p(t) I2/(pSf) is a smooth function. We 
note from other properties of the periodogram that it is an 
oscillating function, with a maximum or minimum exchange pzriod 
of approximately 2/F. In the interval AT, it accomplishes a large 
number of oscillations AT >> 2/F [17]. Consider,ing the oscillatory 
nature zd. smoothness of the subintegral function, it is natural 
to adopt a system of trigonometric functions as the basis of in- 
terpolation and to use, as the approximation, a polynomial of the 
type 

We aG,ect parameters Ak and rl , so that the rule of quaL;ature 
(8.8) gives a precise restilt $or polynomials TR (01, of the highest pos- 
sible degree. As was shown in [ill, rule (8.8) cannot be precise, 
for any Ak and nk, for 211 trigonometric polynomials of degree d. 
The highest degree of accuracy, equal to d - 1, is achieved by the 
quadrature formula, with equal coefficients A!, = AT/d and equi- 
distant nodes. In fact, it is easy to ascertain directly that the 
quadrature rule 

/56 

(8.10) 

where a is any number (0 5 c1 < AT/d), is exact, for all trigono- 
metric polynomials of Zegree d - 1. It is sufficient for this, 
to verify that (8.10) is exactly fulfilled, for function Isp(;) = 
exp(i 2 .rrhc/AT) (h = 0, 1, . - . , d - 1). If h = 0, the right 
and left sides obviously equal AT. If h = 1, 2 ,  . . . , d - 1, 
the integral equals 
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and the sum has the value 

which proves exzct fulfillment of (8.10). We note that the 
quadrature rule (8.10) contains an arbitrary parameter a, the 
presence of which means ttat the equidistant nodes can be located 
completely arbitrarily in interval AT. 

For determination of the nurnber of terms d in quadrature sum 
(8.10) which must be taken, in order tJ obtain the value of the 
integral with the required accuracy, an estimate of the residue 
must be carried out 

(8.11) 

Since the value of a is completely arbitrary, for simplification 
of the contribution, we take it as the middle of the interval 
[ O ,  AT/dI 

(b.12) 

We will estimate the accuracy from the value of the maxim,? -e. 
lative error 

where 

We reduce the periodogram to the form 

(8.13) 

- /57 

(8.14) 
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where 

By c a l c u l a t i c n  of t h e  i n t e g r a l ,  w e  obtain 

(8.15) 

By s u b s t i t u t i o n  of (8.14) and (8.15) i n  (8.11) and by c a l c u l a t i o n  
of LL- -..- -.:LL. ?l------- 

L A L C  D U L L ,  w A L ~ .  i i ~ r u w a l l ~ t :  for (8.12; dnil introGuctiwn ui simiiar 
t e r m s ,  w e  o b t a i n  

( 8 . 1 6 )  

where a = bfAT/d. 

I t  fo l lows  from (8.16) t h a t  t h e  sma l lnes s  of  Rd is s u f f i c j e n t ,  
so t h a t  

(8.17) 

i s  s a t i s f i e d ,  b u t  such an estimate i s  t o o  c o a r s e  and i t  does n o t  
t a k e  account  of a whoie series of p m p e r t i e s  of t h e  s u b i n t e g r a l  
func t ion .  S ince  sin (.rraj) i s  i n  t h e  denominator,  t h e  r eg ion  of 
va lues  i n  which thG optimum d should be sought ,  i r  w i t h i n  

W e  assume t h a t  t h e  real and imaginary p a r t s  of r e a l i z a t i o n  
S. are bounded by t h e  s b s o l u t e  va lue  of c o n s t a n t  M; t hen ,  t h e  
f a l lowing  i n e q u a l i t y  i s  t r u e  



wnere 

then, 

By use of the known relationship 

where C 2 0.577 is the Euler constant, we obtain 

(8.18) 

(8.20) 

With expansion of aaj/sin (.rraj) by powers (aj) and by grouping 
the terms, we will have 

A shortcomip; of estimate of (8.201, connected with use of the 
expression [sin (n6fAT-j )  I 1, is the circumstance that, with in- 
crease of p ,  it becomesworse, since it increases in proportion to 
the logarithm. Hawever, since estimates (8.20) and (8.31) are 
constructed witR ide-tical assumptions, the estimate of their 
ratio E =: Rd/5 will not become poorer (in the sense specified) 
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w i t h  i n c r e a s e  i n  p. 

By e x t r a c t i n g  t h e  main terms of  estimates (8.20) a n J  (8.21) , 
we o b t a i n  a n  approximate expres s ion  f o r  t h e  maximum r e l a t i v e  e r r o r  

(8.22) 

I n  pa r t i cT i l a r ,  i f  

i .e .  , uiscrete values of 2Fp(k / (pSf ) )  are t h e  Four iFr  c o e f c i c i e n t s ,  
t h e n  

I n  t h i s  manner, for p = 1 0 0 0 ,  t h e  r e l a t i v e  error w i l l  nct exceed 
4 % ,  which i s  ci;r,:pletely a c c e p t a b l e  f o r  o u r  purposes .  

Returning t o  t h e  q u e s t i o n  of c a l c u l a t i o n  of t h e  estimates of 
s p e c t r a l  d e n s i t y  by means of t * x e s s i o n  ( 8 . 6 ) ,  w e  n o t e  t h a t ,  
s i n c e ,  i n  t h i s  case 

t h e  accuracy of i n t e g r a t i o n  w i l l  be no less, t h a n  i n  c a l c u l a t i c n F ,  
w i t h  t h c  use  of t h e  F o u r i e r  c o e f f i c i e n t s  ( 8 . 5 )  , wL ich had t o  be 
proved. 

I n  conclus ion  of t h e  s e c t i c n ,  w e  no,e t h a t  we have g iven  t h e  
main a t t e n t i o n  t o  a p p l i c a t i c n  of t h e  FFT t o  c a l c u l a t i o n  3f  es t i -  
mates of s p e c t r a l  d e n s i t y  ( i n t e n s i t y )  t$sp(t) ,  assuming a f i x e d  
d i g i t a l  series Sj. 
by mcLu,:~ ~f t h e  FFT a lgo r i thm,  by adding (N1 - n )  ze ro  v a l u e s  t o  
cen te red  time series x , where N1 = 2ml 2 n ,  i s  t h e  c l o s e s t  t o  t h e  
n power of 2 .  I n  t h i s  case, t h e  d i g i t c z a t i o n  s t e p  of p rocess  
S ( f )  does n c t  i n c r e a s e  ove r  t h a t  vhic;: '.s necessary  (see 7.2 and / 5 ?  - 
t h e  fo l lowing  t e x t )  

I t  i s  clear t h a t  series Sj can also be ob ta ined  

j 
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E-mples are presslted in the next. section, of analysis cf 
nonstationary, widebane, random pro2es;e.s. Digital calculatj.on, 
of the estimates of the intenzity are carried out, both by formula 
(7.6) !with the use of the st-iificatim of the fast Fourier trans- 
form method), a d  by formula (7.10), by means of programs, com- 
piled in Algol lanquage for the BESM-6 digital computer. 

9.  

and 

Results of Analysis of Mrodel ar.d - 
Exper imenta 1 Processes 

We considered several digits; calculztions for stationary 
nonstationary model, random processes, and we discussed cer- 

tain questions - --ich arise in anilysis of actual (experimentsl) 
prccesses. All -:he basic characteristics of model processes 
(At, a ,  q,fH, R(t), kl, their realizations(R3, mol, as dell as 
the averaging intervals ?, 6T, L‘T, Af and the theoretical in- 
tensity curves b(t) and spectra, Cenaities Wx(f) are presented in 
graphs. We elucidate first an3 foremost, how selection of param- 
eters F and AT affect the quality of intensity estimates (7.6). 
We will analyze a model stz‘iorzry noise, a fragment of a reali- 
zation of which is reprer,ented in Fig. 5. 

Fig. 11. Effect of change of averaging 
interval !!’ C,I estirnxte of intensity 
‘$SF(t) = t2 “F (t)/F (? = 0.4=10+* Hz\ : 
1. AT = 0.41*10’6 sec; 2. AT = i.0*10’6 
sec; 3 .  theoretical intensity b. 

The effect of change 
i~ parameters F and AT 
on the nature of the 
estimates of intensity 
(7.6) are shown in Figs. 
11 and 12. The estimate 
has a characteristic 
oscillatory appearance. 
With increase of AT and 
constart F, the oscil- 
lation amplitude decreases 
and the period increases. 
The oscillation period 
equals - 2 AT. With c m -  
stant AT, dispersion of 
t\e estimate increas3s 
wit;, decrease ir F. In 
order to preserve the 
opt’zwn ratio between F 
and AT, as waz shown in 
work [17] and in section 
3 ,  with increase of P, 
tT must be increased 
according to the pattern 

COn5.t AT = p 5  P (9.1) 
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where the constant de- 
pends on the degree of 
unsteadiness @f the 
intensity. In working 
with estimate (7.10), 
to preserve the optimum 
ratio between 6T and AT, 
with consideration of 
(7.81, we find that, with 
increase of 6T, AT must 
be increased by the 
pattern 

kqZ 
9SFfi)J&3 

( 9 . 2 )  115 AT = const (ST! 

A comparison of the 
two intensity estimates 
obtained by formulas (7.6) 

Fig. 17. Effect of change of interval and (7.10) is demonstrated 
on estimate of intensity @SF(>) = by the example of analy- 
(t) / 'F (AT = 0.41-10'6 sec); 1. F = sis cf a Ponstationary, 

wideband noise, the in- @.2*108 Hz; 2. F = 0.4-108 Hz; 3 .  
theoretical intensity b. tensity of which is 

exponentialllr danped 
(Fig, 13;. The small 

difference in the estimates is connected with the difference in - /61 
frequency characteristics of the fi1t;ation operators (3.38, 3.39 Or 
7.3; and (3.55 or 7.7), with widebandd, ;C --I F/2 = 1/(26T). 
The irequer,cy characteristic of filter (7.4) is variable over time 
t, in interval [ -T/2 ,  T / 2 ] .  It differs from rectilinear shape at 
the edges of interval [-T/2, T/2], and it is closest to recti- 
linear shape in the middle of the interval, in which, the larger 
T ,  the botter the approximatioil. The  analytical expression of the 
frequency charactzristic of the filter has L\e form 

4 

where 

(9.3) 



Fig. 13. Comparison of ktensity 
estimates, obtained by means of various 
filtration operators with "wide" band 
$ =  F/2 (At = 10-8 sec; 3 = 55.106 Hz; 
q = 4.5-106 Hz; fH = 7.106 Hz, R(t) = 
exp(-0.575-106 Yz-t sec); k = 1 kgz/cm4 
'HZ); AT = 1.0-10-6 sec; to = io,ooo; 
m = 3000); 1. thegretical intensity 
b?t); 2. estimate @sF(t) (6T = 3010'~ 
sec); 3.  estimate $JSF(~) (F = 0.40108 
sec) . 

The frequency character- 
istic of filter (7.7) is 
constant over tine, and 
it does not depend on 
interval T 

An intensity esti- 
mate, calculated from 
realizatian of a non- 
stationa,ry mise, the 
intensity of which in- 
creases exponentially, 
is presented in F i g .  14. 
In the interval [-T/2 + 

6T)/2:, the estimate 
approximates thefunc- 
tion sought b(t) suf- 
ficiently .Jell. Just as 
in the preceding example 
(Fig. 131, the intensity 
changes smoothly here 

(AT + 6T)/2, T/2 -(AT + 

in the observation interval and, consequently, for AT - T , the 
estimate, not o n l y  has little dispersion, but little dispfacement. 
The chartcteristic scale of the p;-oblem 

r, rv 2 .o I06sec- 4.0 IO 4 sec, 

and the effective bandwidth of the noise 

consequently, the left side of condition (6.4) ha5 this value 

The practical conclusion can be drawn from this, that, if the - /62 
product of the characteristic scale of the unsteadiness and the 
effective bandwidth of ?he progress is within specified limits, 
estimate !7 .5 )  or (7.10) will give satlsfactory results. 

a3  
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I 
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Fig. 14. Intensity estimate, calcu- 
lated by one realization of model, 
nonstationary "white" noise (At = 10-8 
sec, 3 = 55=106 Hz, q = 4.5010~ Hz, 
fH = 7.106 Hz, k = 1 kg2/(cm4 Hz), R ( t )  
= exp(0.575-106 Hz-t sec), AT = 1.0- 
l!F6 sec, 6T = 3-10'* sec, F = 0.333- 
1 0 8  HZ, R G  = 20,000, mo = 2000); 1. 
estimate $SF(t); 2. thecretical in- 
tensity b (t) . 

Af,ff - 13.8 IO6 HZ - 19.0 Io6 Hz. 

C 

We now examine two 
examFles of nonstationary, 
widebhiid noises, in which 
shifting of the intensity 
estiniates plays the most 
significant role. Frag- 
ments of the realizations 
and the Sasic parameters 
of thezz processes are 
represented in Figs. 15 
and 17. The intensity 
has a "bell-shaped" 
appearance (see Figs, 16 
and IS). The width of 
the first "bell" Tx z 
2.0-10-6 sec (we call 
this process slightly 
nonstationary), and tne 
width of the second 
"bell" T, = c).6-10'6 sec 
(we call thLs process 
sha-- ply nons tat ionary ) . 
As before, the effective 
bandwidth for both pro- 
cesses is 

In this manner, for a /63 
slightly nonstationary 
process, 

- 

and, for a shax;?ly non- 
stationary one, 

I I I 1 

ff tu.fo-6 z.o.io-6 .ru.ru-J m.ia+ 
-TsAfef;" 8 - 11. (9.7) 

Fig. 15. Realization of model slightly 
nonstatiosary "white" noise (At = 10-8 
sec, 3 = 55.106 HZ q = 4.5.106 HZ, ff Intensity estimates, ob- 
7-106 H tained for two independent 
2.25-10-i2/2.25*10'12 + (t - 1.5*10'6)2)1 realizations of a slightly 
R o  = 10,000, mo = 11. nonstationary process, are 

k = 1 hg 1 /(cm4*Hz), R(t) = 

8 4  



Fig. 16. Intensity estimates, calcu- 
lated by two independent realizations 
af model slightly nonstationary "white" 
noise (F = 0.40108 EL, AT = 1.0-10-6 
sec). The characteristic unsteadiness 
scale Tx Q 2010'~ sec; 1. theoretical 
intensity b(t); 2. R O  = 10,000, mo = 
I; 3 .  R1 = 15,000, m1 = 1000. 

presented in Fig. 16. 
The estimates calculated 
on the realization (El= 
15,000, m = 1000) 
approximaL well the 
desired function, which 
is completely natural, 
since the process satis- 
fies condition (9.5). 
However, the estimate 
calculated from reali- 
zation (20 = 10,000, 
mo = 1) differs from the 
desired function on the 
right slope of the 
"bell. If In examination 
of this realization 
(Fig. 151, it is easy to 
see that the error in 
the estimate is caused 
by the presence of a 
large scatter in the 
realization, in the 
middle of the observa- 
tion interval. This 
error is due to disper- 
sion of the estimate. 
The presence of large 
single discharges in 
some realizations of the 
random process means 
that process has slight 
ergodicity, relative tc 
the correlation moment. 

Two intensity esti- 
monts, calculated for 
the reali zations rep- 
resented in Fig. 17 
(1 ,  = 21,000, mn = 2000), 

8 Fig. 17. Realization of model sharp1 
nonstationary !white" noise (At = 10- 
Set, s b =  55010~ Hz g = 4.50106 Hz, f = 

10-12/0.25*10'12 + ' One estimate was obtained 

V a l  AT = l . o - l o - %  sec, 

d l  7 0 1 0 ~  Hz, k = 1 kg 5 /(cK4*Hz), R t =O.Y5* arg presented i; ~ i ~ .  18. (t - 1.5.10' ) 1 ,  
to  = 20,000, mo = 2000). for the averagin inter- 

of the large characteristic scale of unsteadiness Tx = 0.6-10-6 sec. 
The estim2te hap a larqe shift. The other zstimate was cal- 
culated for the interval AT = 0.3=10'6 sec,  which is less than 
TY. view of the fact that cocdition (9.5) is not observed, the esti- 
mate poorly approximates the desired function b(t), because of 
the great dispersion. 

/64  - 
In this case, the displecement can be disrsgarded, but, in 
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Fig. 18. Intensity estimates, obtained 
from realizations of model sharply non- 
stationary "white" noise (L = 0.4-108 
Hz). The characteristic scale of un- 
steadiness Tx = 0.6*10'6 sec; 1. AT = 
1.0*10'6 sec; 2. AT = 0.3-10-6 sec; 
3.  theoretical intensity bit). 

Fig. 19. Realization of wideband noise, 
Gbtained from experiment (experimental 
noise), At = 0.005 sec, Afeff g 50 Hz, 
yX - 0.5 - 1.0 sec. 

Before prccesding 
to analysis of a real 
process, a fra9er.t of 
the realization of which, 
obtained from an experi- 
ment, is represented in 
Fig. 19, we note one im- 
portant circumstance 
which  vides des new pros- 
pects for analysis of the 
intensity of real non- 
stationary processes. We 
have already noted in 
section 6 that the model 
processes constructed in 
this work can approximate 
actual random processes 
well. In crder to be con- 
vinced of this, it is 
sufficient to glance at 
Fig. 15 and Fig. 19 and 
ta agree that, if the 
legends of these figures 
were removed, it wculd be 
difficult to expiain, why 
one realization was a 
realization of a model 
noise and the other was 
obtained in an experiment. 
The significant differcnces 
of the majority of real 
processes from the model 
ones considered here is 
that real processes can 
contain, first, narrow- 
band sections which sud- 
denly appear and then 
disappear, second, the 
spectrum of a real noise 
can have two or more 
different wideband levels 

in the intexval from f = 0 Hz to f = Af,ff. Finally, in real 
processes, a change in the effective bandwidth Afeff can take 
place with the passage of time. 9f course, interesting models 
can be constructed for all these cases, but we will nct dwell on 
thjs. The concept of intensity loses meaning for such processes, 
since they begin to be wideband processes, which are close to 
white i-oise, but one can speak of the frequency average intensity 
by analogy with the average (ever time) spectral density, which 
sometimes i s  used in analysis of nonstationary processes. Thus, 
in analysis cf the realization of a nonstationary, random Frocess, 



it i s  a d v i s a b l e ,  t o g e t h e r  w i t h  estimates of d i s p e r s i o n  and t h e  
t i m e  average  spectral d e n s i t y ,  t o  ca lcu la te  t h e  estimate of t h e  
freqxency averaged i n t e n s i t y .  With t h e  exception of random 
co inc idences ,  t h e  n a t u r e  of change i n  d i s p e r s i o n  and i n t e n s i t y  
w i l l  be t h e  same, if t h e  uns t ead jness  of  t h e  n o i s e  is caused only  
by change i n  t h e  t o t a l  l e v e l ,  arid is  n o t  connected w i t h  change i n  
t h e  e f f e c t i v e  bandwidth o f  t h e  random p r o c e s s  o r  w i t h  t h e  
appearance of narrow band components. A j o i n t  comparison of 
d i s p e r s i o n ,  f requency average  i n t e n s i t y  and t i m e  averaged s p e c t r a l  
d e n s i t y  of a n o n s t a t i o n a r y ,  random process ,  pe rmi t s  compi la t ion  
of a r e p r e s e n t a t i o n  of t h e  s t r u c t u r e  of t h e  p rocess .  A s  an ex- 
ample, we examipe an a n a l y s i s  of a r e a l i z a t i o n  ob ta ined  expe r i -  
menta l ly .  E s t i m a t e s  of t h e  tixe average  s p e c t r a l  d e n s i t y ,  ca lcu-  
la ted f o r  two averaging  i n t e r v a l s  Af = 2 .5  H z  and Af = 20 Hz, 
are p resen ted  i n  F ig .  20.  The f i r s t  estimate ( A f  = 2.5 Hz) shows 
t h a t  t h e r e  i s  an inc reased  l e v e l  i n  t h e  p rocess ,  i n  t h e  0 - 3 Hz/65 - 
r eg ion ,  and a narrow band s e c t i o n  i n  t h e  1 6  - 2 4  Hz r eg ion .  I t  
follows from t h e  second estimate t h a t  t w o  spec t ra l  d e n s i t y  levels 
predominate i n  t h e  frequency i n t e r v a l  frcm f = 0 t o  f = 50 H z :  
low-fre ueyc (0 .075-  kg / (cm4-Hz) ) and high-frequency (0.05 

E s t i m a t e s  of t h e  d i s p e r s i o n  and t h e  frequency 
averaged i n t e n s i t y ,  c a l c u l a t e d  f o r  t h i s  r e a l i z a t i o n ,  are  p r e s e n t &  
i n  F ig .  21 Although t h e  e s t i n a t e s  3re D l o t t e d  i n  d i f f e r e n t  
scales, t h  are such t h a t  t h e  n a t u r e  of change i n  them pe rmi t s  
t h e  1ocatl .n of t h e  narrow band s e c t i o n  t o  be i d e n t i f i e d  immedi- 
a t e l y ,  namely: i n  t h e  t i m e  i n t e r v a l  f r o m  t t 2.0  sec t o  t 2 2.8 
sec, t h e  e p i d i s t a n t  change i n  d i s p e r s i o n  and i n t e n s i t y  is  d i s -  
rup ted ,  i . e . ,  i n  t h i s  s e c t i o n ,  t h e  p rocess  beq ins  t o  be k-ideband. 
I n  t h e  t i  1.e i n t e r v a l s  from t z 1 . 0  sec t o  t = 2 . 0  sec and from 
t 2.8 - e c  t o  t t 3.6 sec, a n a l y s i s  of t h e  estimates of d i s p e r s i o n ,  
i n t e n s i t y  and spectral d e n s i t y  ( A f  = 20 Hz)  :'iuws t t a t ,  i n  t h e s e  
s e c t i o n s ,  t h e  l o w  frequency n o i s e  l e v e l  I s  c:c , s ive  (-0.04*10'4 
kg2/(cm4-Hz)) ,  and t h a t  t h e  h igh  frequency rioise l eve l  (-0.025- 
loe4 kg2/(cm4-Hz))  i s  d e c i s i v e  i n  t h e  i n t e r v a l  from t z 3.6 sec 
t o  t t 4 . 9  sec. W e  recall  t h a t  t h e  average  s p - c t r a l  d e n s i t y  l e v e l ,  
by d e f i n i t i o n ,  i s  twice t h e  average i n t e n s i t y  l e v e l ,  i . e . ,  t h e  
r e s u l t  of t h e  spec - ra l  a n a l y s i s  (Fig.  2 0 )  and t h e  r e s u l t  o f  analy-  
sis of i n t e n s i t y  (F ig .  2 1 )  a g r e e  s a t i s - - a c t o r i l y .  

s t r u c t u r e  of t h i s  p rocess  can be rondlicted, by means of  a n a l y s i s  
of estimates of t h e  i n s t a i t a n e o u s  power spectrum. 

kg / ( c m  * $ - H z ) j .  

We n o t e  i n  conclus ion  t h a t  a more d e t a i l e d  a n a l y s i s  of t h e  



Fig .  20. E s t i m a t e  of t i m e  averaged 
s p e c t r a l  d e n s i t y ,  ob ta ined  from reali-  
z a t i o n  of exper imenta l  n o i s e  wi th  
narrow band section (a) ( A t  = 0.0025 
sec, T = 4 . 9  sec); 1. Af  = 2.5 Hz; 2. 
Af = 20 Hz. 

Fig .  21. Es t ima tes  of d i s p e r s i o n  and 
frequency a v e r d g e d i n t e n s i t y ,  c a l c u l a t e d  
from r e a l i z a t i o n  of e x p e r i m e r t a l  n o i s e  
w i t h  r . d r row F ind sec t io r .  I P J -  = 0.0025 
sec, A f e f f  2 5 0  Rz, T, - : - 1 . 0  sec, 
6T = 0 . 0 1  sec, F a Sc, Hz; 3 .  wideband 
n o i s e  s e c t i o n ;  5. n a r q w  bal,.3 s e c t i o n ;  
1. i n t e n s i t y  estimate $ S F ( t )  (AT .I-‘ 0 .3  
sec) : 2.  d i s p e r s i o n  e s t i m a t e  rx ( t ,  t i  
(AT = 0.3  sec).  

Conclusions - 
1. Analysis of t h e  

connec t ion  between sta- 
t i o n a r y  (uniform] i n  t h e  
broad s e n s e ,  random pro- 
cesses a r d  wh i t e  n o i s e  
has  p e r m i t t e d  eonstr t ic-  
t i o n  o f  a method of 
e s t i m a t i o n  of t h e  i n t e n -  
s i t y  of n o n s t a t i o n a r y ,  
wideband p rocesses .  

2, I f  random p m -  
cess X f t )  i s  such t h a t ,  
i n  t h e  t i m e  o r  f requency 
r e g i o n s ,  it pe rmi t s  aver -  
ag ing  over  a large i n t e r v a l  
and, consequent ly ,  aver- 
ag ing  over  a sma l l  i n t e r v a l  
can be c a r r i e d  o u t  by 
a n o t h e r  v a r i a b l e ,  f o r  
such a p r o c e s s ,  t h e  method,c 
cons ide red  permi t  es t i -  
mates of t h e  q u a d r a t i c  
c h a r a c t e r i s t i c s  t o  be ob- 
t a i n e d ,  w i t h  small d i s -  
placement and d i s p e r s i o n .  

3. By means of 
d i g i t a l  a n a l y s i s  of model 
random processes ,  es- 
p e c i a l l y  r e a l i z e d  by 
d i g i t a l  compcter,  and! of 
real  p r o c e s s e s ,  t h e  con- 
d i t i o n s  of a p p l j c a b i l i t y  
of the  methods have been 
s t u d i e d  i n  d e t a i l ,  an2 
c o n c r e t e  recommendations 
f o r  t h e i r  p r a c t i c a l  u se  
have been g iven .  

4 .  The b a s i c  ru le  
j.n c a l c u l a t i o n  of i n t e n -  
s i t y  e s t i m a t e s  from i n d i -  
v i d u a l  r e ~ l i z a t i o f i s  i s  
t h a t  t h e  bandwidth F of 
t h e  f i r s t  f i l t e r  nilst be 



less than the effective bandwidth of the noise being studied, and 
the bandwidth 1/AT of the second filtei w.ust be, first, much less 
than F and, second, the value of interval AT must be much less 
than the assumed characteristic scale of the nonstationary change 
of irtensity T,. 

intensity, in which trigonometric functions are not used. The 
number of operations of the algorithm is proportional- to the 
number of points of time series x 

5. In estimate is pr@Fosed, for accelerated calculation of 

j *  
6. A modification of the fast Fourier transform method is 

proposed, applicable to the calculation of estimates of the 
spectral density, for a digital series of arbitrary length n, 
in distinction from the classical case of n = 2m. 
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